Xuliang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. Bioactive Materials, 2022, 7, 364-376.	15.6	25
2	Chirality Bias Tissue Homeostasis by Manipulating Immunological Response. Advanced Materials, 2022, 34, e2105136.	21.0	22
3	Oxygen Ion Implantation Improving Cell Adhesion on Titanium Surfaces through Increased Attraction of Fibronectin PHSRN Domain. Advanced Healthcare Materials, 2022, 11, e2101983.	7.6	7
4	Multiscale engineered artificial tooth enamel. Science, 2022, 375, 551-556.	12.6	138
5	Biomimetic hierarchical implant surfaces promote early osseointegration in osteoporotic rats by suppressing macrophage activation and osteoclastogenesis. Journal of Materials Chemistry B, 2022, 10, 1875-1885.	5.8	5
6	TBK1-METTL3 axis facilitates antiviral immunity. Cell Reports, 2022, 38, 110373.	6.4	24
7	Extrapolating neurogenesis of mesenchymal stem/stromal cells on electroactive and electroconductive scaffolds to dental and oral-derived stem cells. International Journal of Oral Science, 2022, 14, 13.	8.6	4
8	<i>Streptococcus mutans</i> cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment. Molecular Oral Microbiology, 2022, 37, 97-108.	2.7	1
9	A Gradient pH‧ensitive Polymerâ€Based Antiviral Strategy via Viroporinâ€Induced Membrane Acidification. Advanced Materials, 2022, 34, e2109580.	21.0	3
10	The innovation of biomaterials: From bioactive to bioelectroactive. Science China Materials, 2022, 65, 1723-1726.	6.3	4
11	A Gradient pHâ€5ensitive Polymerâ€Based Antiviral Strategy via Viroporinâ€Induced Membrane Acidification (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	21.0	1
12	Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nature Materials, 2022, 21, 1121-1129.	27.5	66
13	Self-Activated Cascade Biocatalysis of Glucose Oxidase–Polycation–Iron Nanoconjugates Augments Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2022, 14, 32823-32835.	8.0	7
14	Remote Tuning of Builtâ€In Magnetoelectric Microenvironment to Promote Bone Regeneration by Modulating Cellular Exposure to Arginylglycylaspartic Acid Peptide. Advanced Functional Materials, 2021, 31, 2006226.	14.9	33
15	An overview of signaling pathways regulating YAP/TAZ activity. Cellular and Molecular Life Sciences, 2021, 78, 497-512.	5.4	59
16	Ultra‣ensitive and Selective Electrochemical Bioâ€Fluid Biopsy for Oral Cancer Screening. Small Methods, 2021, 5, e2001205.	8.6	4
17	The Dynamic Counterbalance of RAC1â€YAP/OBâ€Cadherin Coordinates Tissue Spreading with Stem Cell Fate Patterning. Advanced Science, 2021, 8, 2004000.	11.2	7
18	HtrA3â€Mediated Endothelial Cell–Extracellular Matrix Crosstalk Regulates Tip Cell Specification. Advanced Functional Materials, 2021, 31, 2100633.	14.9	2

#	Article	IF	CITATIONS
19	Inside Front Cover: Ultraâ€Sensitive and Selective Electrochemical Bioâ€Fluid Biopsy for Oral Cancer Screening (Small Methods 5/2021). Small Methods, 2021, 5, 2170018.	8.6	0
20	A Review of External Cervical Resorption. Journal of Endodontics, 2021, 47, 883-894.	3.1	13
21	Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioactive Materials, 2021, 6, 2029-2038.	15.6	72
22	Sizeâ€Confined Effects of Nanostructures on Fibronectinâ€Induced Macrophage Inflammation on Titanium Implants. Advanced Healthcare Materials, 2021, 10, e2100994.	7.6	17
23	Age and gender differences in ACE2 and TMPRSS2 expressions in oral epithelial cells. Journal of Translational Medicine, 2021, 19, 358.	4.4	22
24	An Amorphous Periâ€Implant Ligament with Combined Osteointegration and Energyâ€Dissipation. Advanced Materials, 2021, 33, e2103727.	21.0	18
25	MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2021, 36, 295-307.	2.7	1
26	Three-dimensional radiographic and histological tracking of rat mandibular defect repair after inferior alveolar nerve axotomy. Archives of Oral Biology, 2021, 131, 105252.	1.8	2
27	Mutation in ε-Sarcoglycan Induces a Myoclonus-Dystonia Syndrome-Like Movement Disorder in Mice. Neuroscience Bulletin, 2021, 37, 311-322.	2.9	8
28	Cell Membrane Vesicles with Enriched CXCR4 Display Enhances Their Targeted Delivery as Drug Carriers to Inflammatory Sites. Advanced Science, 2021, 8, e2101562.	11.2	17
29	The miRâ€193aâ€3pâ€MAP3k3 Signaling Axis Regulates Substrate Topographyâ€Induced Osteogenesis of Bone Marrow Stem Cells. Advanced Science, 2020, 7, 1901412.	11.2	17
30	Detection of SARSâ€CoVâ€2 in saliva and characterization of oral symptoms in COVIDâ€19 patients. Cell Proliferation, 2020, 53, e12923.	5.3	168
31	Electromagnetic interference effect of dental equipment on cardiac implantable electrical devices: A systematic review. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 1588-1598.	1.2	4
32	Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Frontiers in Cell and Developmental Biology, 2020, 8, 735.	3.7	71
33	Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. Journal of Materials Chemistry B, 2020, 8, 10221-10256.	5.8	53
34	Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus. Theranostics, 2020, 10, 6500-6516.	10.0	37
35	Controlling Enamel Remineralization by Amyloid‣ike Amelogenin Mimics. Advanced Materials, 2020, 32, e2002080.	21.0	66
36	Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Research and Therapy, 2020, 11, 245.	5.5	55

#	Article	IF	CITATIONS
37	Enamel Repair with Amorphous Ceramics. Advanced Materials, 2020, 32, e1907067.	21.0	30
38	<p>Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts</p> . International Journal of Nanomedicine, 2019, Volume 14, 3015-3026.	6.7	43
39	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. Advanced Materials, 2019, 31, e1900582.	21.0	73
40	Characterization of the salivary microbiome in people with obesity. PeerJ, 2018, 6, e4458.	2.0	75
41	Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine. Scientific Reports, 2017, 7, 40701.	3.3	64
42	Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. Journal of Dentistry, 2017, 62, 91-97.	4.1	24
43	Directing Stem Cell Differentiation <i>via</i> Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array. ACS Nano, 2017, 11, 5915-5924.	14.6	89
44	Builtâ€In Electric Fields Dramatically Induce Enhancement of Osseointegration. Advanced Functional Materials, 2017, 27, 1703771.	14.9	73
45	Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dental Materials, 2017, 33, 1217-1228.	3.5	57
46	Cellular Uptake and Delivery-Dependent Effects of Tb3+-Doped Hydroxyapatite Nanorods. Molecules, 2017, 22, 1043.	3.8	12
47	Biomedical Applications of Dental and Oral-Derived Stem Cells. Stem Cells International, 2017, 2017, 1-2.	2.5	1
48	Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	10
49	In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics. Materials, 2016, 9, 218.	2.9	9
50	The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites. Materials, 2016, 9, 320.	2.9	7
51	Nanocomposite Membranes Enhance Bone Regeneration Through Restoring Physiological Electric Microenvironment. ACS Nano, 2016, 10, 7279-7286.	14.6	208
52	<i>In situ</i> fabrication of paclitaxelâ€loaded coreâ€crosslinked micelles via thiolâ€ene "click†chemistry for reductionâ€responsive drug release. Journal of Polymer Science Part A, 2016, 54, 99-107.	2.3	26
53	Synergistic effects of elastic modulus and surface topology of Ti-based implants on early osseointegration. RSC Advances, 2016, 6, 43685-43696.	3.6	20
54	Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale, 2016, 8, 15783-15794.	5.6	65

#	Article	IF	CITATIONS
55	Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. Materials Science and Engineering C, 2016, 58, 742-749.	7.3	46
56	Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO 2 nanofiber fillers. Materials Science and Engineering C, 2016, 59, 464-470.	7.3	56
57	Remineralizing Efficacy of Fluorohydroxyapatite Gel on Artificial Dentinal Caries Lesion. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	3
58	Electrospun Gelatin/ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mo mathvariant="bold">î²</mml:mo></mml:mrow></mml:math> -TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and <i>In Vivo</i> Bone Formation by Activating Ca ^{2+} -Sensing Receptor Signaling. Stem Cells International, 2015, 2015, 1-13	2.5	37
59	Enhanced Critical Size Defect Repair in Rabbit Mandible by Electrospun Gelatin/ <i>î²</i> -TCP Composite Nanofibrous Membranes. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	11
60	Attenuating Immune Response of Macrophage by Enhancing Hydrophilicity of Ti Surface. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	24
61	Investigations into the Biocompatibility of Nanohydroxyapatite Coated Magnetic Nanoparticles under Magnetic Situation. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	3
62	Osteogenic differentiation of MC3T3-E1 cells on poly(l-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Materials Science and Engineering C, 2015, 55, 166-173.	7.3	51
63	Enhanced Osteogenic Behavior of ADSCs Produced by Deproteinized Antler Cancellous Bone and Evidence for Involvement of ERK Signaling Pathway. Tissue Engineering - Part A, 2015, 21, 1810-1821.	3.1	18
64	Biomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC/ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries. PLoS ONE, 2015, 10, e0116553.	2.5	88
65	Synthesis of iodine-containing cyclophosphazenes for using as radiopacifiers in dental composite resin. Materials Science and Engineering C, 2014, 43, 432-438.	7.3	14
66	Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. Journal of Dentistry, 2014, 42, 1603-1612.	4.1	61
67	Lower Extent but Similar Rhythm of Osteogenic Behavior in hBMSCs Cultured on Nanofibrous Scaffolds <i>versus</i> Induced with Osteogenic Supplement. ACS Nano, 2013, 7, 6928-6938.	14.6	68
68	Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Biomaterials, 2013, 34, 9103-9114.	11.4	53
69	Restoration of Critical-Sized Defects in the Rabbit Mandible Using Autologous Bone Marrow Stromal Cells Hybridized with Nano- <i>β</i> -tricalcium Phosphate/Collagen Scaffolds. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	7
70	Dose-dependent enhancement of bone marrow stromal cells adhesion, spreading and osteogenic differentiation on atmospheric plasma-treated poly(<scp>l</scp> -lactic acid) nanofibers. Journal of Bioactive and Compatible Polymers, 2013, 28, 453-467.	2.1	11
71	Influence of La Doping on Magnetic and Optical Properties of Bismuth Ferrite Nanofibers. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	20
72	The Effects of Lactidyl/Glycolidyl Ratio and Molecular Weight of Poly(D,L -Lactide-co-Glycolide) on the Tetracycline Entrapment and Release Kinetics of Drug-Loaded Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1005-1019.	3.5	21

#	Article	IF	CITATIONS
73	Effects of Anhydroicaritin and 2″-Hydroxy-3″-en-Anhydroicaritin on the Proliferation and Differentiation of MC3T3–E1 Osteoblasts. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	1
74	Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Materials Letters, 2012, 73, 172-175.	2.6	27
75	Preparation of CePO4-coated zirconia ceramics and their mechanical behavior. Rare Metals, 2011, 30, 282-286.	7.1	3
76	Structure and wettability relationship of coelectrospun poly (Lâ€lactic acid)/gelatin composite fibrous mats. Polymers for Advanced Technologies, 2011, 22, 2222-2230.	3.2	26
77	The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 600-609.	3.1	86
78	The biological properties of carbon nanofibers decorated with β-tricalcium phosphate nanoparticles. Carbon, 2010, 48, 2266-2272.	10.3	27
79	Microfibrous \hat{I}^2 -TCP/collagen scaffolds mimic woven bone in structure and composition. Biomedical Materials (Bristol), 2010, 5, 065005.	3.3	16
80	Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research - Part A, 2009, 90A, 671-679.	4.0	187
81	Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2007, 82A, 445-454.	4.0	189