You-Qing Shen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8061046/you-qing-shen-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,734 69 450 123 h-index g-index citations papers 21,844 7.06 7.2 497 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
450	Diverse Applications of Nanomedicine. <i>ACS Nano</i> , 2017 , 11, 2313-2381	16.7	714
449	Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. <i>Advanced Materials</i> , 2017 , 29, 1606628	24	545
448	Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4259-65	16.4	482
447	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-	206 .7	444
446	Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. <i>Chemistry - A European Journal</i> , 2006 , 12, 4021-6	4.8	432
445	In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3579-88	16.4	411
444	Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. <i>Progress in Polymer Science</i> , 2010 , 35, 1128-1143	29.6	392
443	PolymerIhorganic nanocomposite membranes for gas separation. <i>Separation and Purification Technology</i> , 2007 , 55, 281-291	8.3	365
442	Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. <i>Nature Nanotechnology</i> , 2019 , 14, 799-809	28.7	327
441	Targeted charge-reversal nanoparticles for nuclear drug delivery. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4999-5002	16.4	325
440	Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. <i>Advanced Materials</i> , 2013 , 25, 3670-6	24	305
439	Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. <i>Journal of the American Chemical Society</i> , 2013 , 135, 933-40	16.4	269
438	Charge-Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug Delivery. <i>Advanced Functional Materials</i> , 2009 , 19, 3580-3589	15.6	266
437	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552	7.9	256
436	Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. <i>Advanced Materials</i> , 2014 , 26, 7615-21	24	253
435	Enhanced CO2 Absorption of Poly(ionic liquid)s. <i>Macromolecules</i> , 2005 , 38, 2037-2039	5.5	248
434	Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery. <i>Advanced Materials</i> , 2016 , 28, 1743-52	24	238

433	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. <i>Advanced Drug Delivery Reviews</i> , 2017 , 115, 115-154	18.5	237
432	A Tumor-Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. <i>Advanced Materials</i> , 2017 , 29, 1702342	24	209
431	Catalyst separation in atom transfer radical polymerization. <i>Progress in Polymer Science</i> , 2004 , 29, 1053-	12097.68	204
430	Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. <i>Journal of Membrane Science</i> , 2007 , 294, 178-185	9.6	192
429	Challenges in design of translational nanocarriers. <i>Journal of Controlled Release</i> , 2012 , 164, 156-69	11.7	191
428	Poly(ionic liquid)s as new materials for CO2 absorption. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 547	7 <u>25</u> 489	185
427	Flue-Gas Carbon Capture on Carbonaceous Sorbents: Toward a Low-Cost Multifunctional Carbon Filter for Green Energy Producers [Industrial & Samp; Engineering Chemistry Research, 2008, 47, 3783-3794]	₁ 3.9	181
426	Curcumin polymers as anticancer conjugates. <i>Biomaterials</i> , 2010 , 31, 7139-49	15.6	159
425	Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. <i>Biomacromolecules</i> , 2006 , 7, 829-35	6.9	149
424	Esterase-Activated Charge-Reversal Polymer for Fibroblast-Exempt Cancer Gene Therapy. <i>Advanced Materials</i> , 2016 , 28, 10613-10622	24	144
423	Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. <i>Biomaterials</i> , 2013 , 34, 5722-35	15.6	139
422	Novel Rare Earth Catalysts for the Living Polymerization and Block Copolymerization of Ecaprolactone. <i>Macromolecules</i> , 1996 , 29, 8289-8295	5.5	135
421	Highly active copper-based catalyst for atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16277-85	16.4	132
420	Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers. <i>Biomacromolecules</i> , 2004 , 5, 1736-44	6.9	132
419	Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 1432-1443	2.5	129
418	Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. <i>Polymer</i> , 2005 , 46, 12460-12467	3.9	126
417	The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. <i>ACS Nano</i> , 2018 , 12, 6179-6192	16.7	125
416	In situ doping polymerization of pyrrole with sulfonic acid as a dopant. <i>Synthetic Metals</i> , 1998 , 96, 127-1	3,2 6	122

415	Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 1628-1635	5.5	122
414	Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials. <i>Macromolecules</i> , 2008 , 41, 493-496	5.5	119
413	Preparation, surface functionalization and application of FeO magnetic nanoparticles. <i>Advances in Colloid and Interface Science</i> , 2020 , 281, 102165	14.3	116
412	Macromolecular MRI contrast agents: Structures, properties and applications. <i>Progress in Polymer Science</i> , 2013 , 38, 462-502	29.6	115
411	Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 5794-5801	2.5	115
410	Nuclear drug delivery for cancer chemotherapy. <i>Journal of Controlled Release</i> , 2011 , 155, 227-36	11.7	110
409	Dual-channel NIR activatable theranostic prodrug for spatiotemporal tracking thiol-triggered chemotherapy. <i>Chemical Science</i> , 2016 , 7, 4958-4965	9.4	110
408	Ionic Liquid Catalyst for Biphasic Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecules</i> , 2005 , 38, 5921-5928	5.5	106
407	Viral mimicking ternary polyplexes: a reduction-controlled hierarchical unpacking vector for gene delivery. <i>Advanced Materials</i> , 2014 , 26, 1534-40	24	104
406	CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. <i>Journal of Membrane Science</i> , 2006 , 281, 130-13	38 ^{9.6}	103
405	Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers. Journal of the American Chemical Society, 2009 , 131, 14795-803	16.4	99
404	Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. <i>Macromolecules</i> , 2000 , 33, 5427-5431	5.5	99
403	Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 284-292	7.3	95
402	Isothermal Carbon Dioxide Sorption in Poly(ionic liquid)s. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 9113-9118	3.9	94
401	Conjugate of Pt(IV)-histone deacetylase inhibitor as a prodrug for cancer chemotherapy. <i>Molecular Pharmaceutics</i> , 2012 , 9, 2793-800	5.6	91
400	Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. <i>Nanomedicine</i> , 2010 , 5, 1205-17	5.6	91
399	CuBr2/N,N,N?,N?-Tetra[(2-pyridal)methyl]ethylenediamine/Tertiary Amine as a Highly Active and Versatile Catalyst for Atom-Transfer Radical Polymerization via Activator Generated by Electron Transfer. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1127-1131	4.8	88
398	Novel SN38 conjugate-forming nanoparticles as anticancer prodrug: in vitro and in vivo studies. Journal of Controlled Release, 2013, 166, 147-58	11.7	86

(2001-2000)

397	Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 956	5- 95 9	85
396	Transferrin-modified liposome promotes Emangostin to penetrate the blood-brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 421-30	6	82
395	Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10949-55	16.4	81
394	Facile Synthesis of Polyester Dendrimers as Drug Delivery Carriers. <i>Macromolecules</i> , 2013 , 46, 37-42	5.5	80
393	Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. <i>Molecular Therapy</i> , 2016 , 24, 364-374	11.7	79
392	Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. <i>Nanomedicine</i> , 2010 , 5, 855-65	5.6	79
391	Synthesis and characterization of highly random copolymer of ?-caprolactone and D,L-lactide using rare earth catalyst. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 1799-1805	2.5	79
390	Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2009 , 5, 192-201	6	77
389	Magnetic Nanoparticle Supported Catalyst for Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2006 , 39, 6399-6405	5.5	77
388	Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 3821-3827	2.5	77
387	Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. <i>Biomaterials</i> , 2011 , 32, 9136-43	15.6	76
386	TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. <i>Biomaterials</i> , 2014 , 35, 5605-18	15.6	74
385	Versatile Initiators for Macromonomer Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2000 , 33, 5399-5404	5.5	71
384	Advanced functional polymer materials. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1803-1915	7.8	70
383	Intracellularly Disintegratable Polysulfoniums for Efficient Gene Delivery. <i>Advanced Functional Materials</i> , 2017 , 27, 1606826	15.6	69
382	Constructing NIR silicallyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. <i>Chemical Science</i> , 2013 , 4, 1221	9.4	69
381	Virion-mimicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1260-4	16.4	69
380	Effect of Ligand Spacer on Silica Gel Supported Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecules</i> , 2001 , 34, 5812-5818	5.5	69

379	Application and design of esterase-responsive nanoparticles for cancer therapy. <i>Drug Delivery</i> , 2019 , 26, 416-432	7	68
378	Characteristics and Mechanism of ECaprolactone Polymerization with Rare Earth Halide Systems. <i>Macromolecules</i> , 1996 , 29, 3441-3446	5.5	68
377	Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. <i>Biomaterials</i> , 2020 , 240, 119902	15.6	65
376	Gel formation in atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate and ethylene glycol dimethacrylate. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 3780-3788	2.5	65
375	Aliphatic Polycarbonates with Controlled Quantities of d-Xylofuranose in the Main Chain. <i>Macromolecules</i> , 1999 , 32, 3891-3897	5.5	65
374	Polycarbonates from Sugars: Ring-Opening Polymerization of 1,2-O-Isopropylidene-d-Xylofuranose-3,5- Cyclic Carbonate (IPXTC). <i>Macromolecules</i> , 1999 , 32, 2799-280	2 ^{.5}	65
373	Atom Transfer Radical Polymerization of Methyl Methacrylate Mediated by Copper BromideII etraethyldiethylenetriamine Grafted on Soluble and Recoverable Poly(ethylene-b-ethylene glycol) Supports. <i>Macromolecules</i> , 2001 , 34, 8603-8609	5.5	64
372	Soluble and Recoverable Support for Copper Bromide-Mediated Living Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 3182-3185	5.5	64
371	Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. <i>Journal of Controlled Release</i> , 2013 , 169, 239-45	11.7	63
370	Brominated Poly(2,6-diphenyl-1,4-phenylene oxide) and Its Silica Nanocomposite Membranes for Gas Separation. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 2567-2575	3.9	62
369	Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2006 , 48, 50-7	6	62
368	A MnO Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. <i>ACS Nano</i> , 2019 , 13, 14283-14	4 2 93	62
367	Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells. <i>ACS Applied Materials & Description</i> , 19, 3330-3342	9.5	61
366	Neural Stem Cells Transfected with Reactive Oxygen Species-Responsive Polyplexes for Effective Treatment of Ischemic Stroke. <i>Advanced Materials</i> , 2019 , 31, e1807591	24	61
365	Degradable dual pH- and temperature-responsive photoluminescent dendrimers. <i>Chemistry - A European Journal</i> , 2011 , 17, 5319-26	4.8	59
364	Cisplatin compromises myocardial contractile function and mitochondrial ultrastructure: role of endoplasmic reticulum stress. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2010 , 37, 460-5	3	59
363	Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilibria,	2.5	59
362	Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. <i>Journal of Controlled Balance</i> 2015, 200, 260, 71	11.7	58

(2004-2015)

361	Amphiphilic drugs as surfactants to fabricate excipient-free stable nanodispersions of hydrophobic drugs for cancer chemotherapy. <i>Journal of Controlled Release</i> , 2015 , 220, 175-179	11.7	57	
360	Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. <i>ACS Nano</i> , 2016 , 10, 11385-11396	16.7	57	
359	Simultaneous adsorption of heavy metals and organic dyes by ¶Cyclodextrin-Chitosan based cross-linked adsorbent. <i>Carbohydrate Polymers</i> , 2021 , 255, 117486	10.3	56	
358	Continuous atom transfer radical block copolymerization of methacrylates. <i>AICHE Journal</i> , 2002 , 48, 260	0 3 . 2 61	9 55	
357	Carbon Dioxide Solubility in Polymerized Ionic Liquids Containing Ammonium and Imidazolium Cations from Magnetic Suspension Balance: P[VBTMA][BF4] and P[VBMI][BF4]. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5542-5547	3.9	54	
356	Reversible Catalyst Supporting via Hydrogen-Bonding-Mediated Self-Assembly for Atom Transfer Radical Polymerization of MMA. <i>Macromolecules</i> , 2004 , 37, 1728-1734	5.5	53	
355	Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. <i>ACS Nano</i> , 2020 , 14, 4890-4904	16.7	53	
354	Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy. <i>Small</i> , 2016 , 12, 5108-5119	11	52	
353	Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. <i>Biotechnology Advances</i> , 2014 , 32, 818-30	17.8	52	
352	Soluble conductive polypyrrole synthesized by in situ doping with haphthalene sulphonic acid. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 3689-3695	2.5	52	
351	Recent Progress in Fluorescence Imaging of the Near-Infrared II Window. ChemBioChem, 2018, 19, 2522	:- 3.5 41	51	
350	Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. Journal of Materials Chemistry, 2011 , 21, 19114		50	
349	A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. <i>Nature Biomedical Engineering</i> , 2017 , 1, 745-757	19	49	
348	Logical design and application of prodrug platforms. <i>Polymer Chemistry</i> , 2019 , 10, 306-324	4.9	48	
347	pH-responsive nanoparticles for cancer drug delivery. <i>Methods in Molecular Biology</i> , 2008 , 437, 183-216	1.4	47	
346	Microtubes of conducting polymers. <i>Synthetic Metals</i> , 1999 , 101, 708-711	3.6	47	
345	Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors. <i>Biomacromolecules</i> , 2018 , 19, 2308-2319	6.9	46	
344	Atom transfer radical polymerization of methyl methacrylate via reversibly supported catalysts on silica gel via self-assembly. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 22-30	2.5	46	

343	Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. <i>Theranostics</i> , 2018 , 8, 3949-3963	12.1	45
342	Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy. <i>Nanoscale</i> , 2017 , 10, 203-214	7.7	45
341	Synthesis of methacrylate macromonomers using silica gel supported atom transfer radical polymerization. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1387-1394	2.6	44
340	Atom transfer radical polymerization and copolymerization of vinyl acetate catalyzed by copper halide/terpyridine. <i>AICHE Journal</i> , 2009 , 55, 737-746	3.6	43
339	Tertiary Amine Enhanced Activity of ATRP Catalysts CuBr/TPMA and CuBr/Me6TREN. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1834-1838	4.8	43
338	Nanocomposite Membranes for CO2 Separations: Silica/Brominated Poly(phenylene oxide). <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1547-1551	3.9	43
337	Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. <i>Biomaterials</i> , 2018 , 178, 559-569	15.6	42
336	Ring Opening Polymerization of Ecaprolactone by Rare Earth Alkoxide © Cl4 Systems. <i>Polymer Journal</i> , 1995 , 27, 59-64	2.7	42
335	Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites. <i>Biomaterials</i> , 2018 , 158, 56-73	15.6	41
334	Targeted Co-delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer. <i>Small</i> , 2017 , 13, 1602697	11	40
333	Supported atom transfer radical polymerization of methyl methacrylate mediated by CuBrEetraethyldiethylenetriamine grafted onto silica gel. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 1051-1059	2.5	40
332	NIR-II bioimaging of small organic molecule. <i>Biomaterials</i> , 2021 , 271, 120717	15.6	40
331	Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. <i>Chemical Communications</i> , 2005 , 3325-7	5.8	39
330	A multifunctional PEG-PLL drug conjugate forming redox-responsive nanoparticles for intracellular drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7594-7603	7.3	38
329	Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants. <i>Journal of Polymer Science Part A</i> , 1999 , 37, 1443-1449	2.5	38
328	Thermoresponsive degradable poly(ethylene glycol) analogues. <i>Journal of Biomedical Materials Research - Part A,</i> 2008 , 84, 148-57	5.4	37
327	Atom Transfer Radical Block Copolymerization of 2-(N,N-Dimethylamino)ethyl Methacrylate and 2-Hydroxyethyl Methacrylate. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 925-935	3.9	37
326	Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1019-1037	19	37

325	Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field. <i>Nanotechnology Reviews</i> , 2019 , 8, 1-17	6.3	36
324	Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. <i>Biomaterials</i> , 2017 , 144, 105-118	15.6	36
323	Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2020 , 202, 111682	6.7	36
322	Integration of Polymerization and Biomineralization as a Strategy to Facilely Synthesize Nanotheranostic Agents. <i>ACS Nano</i> , 2018 , 12, 12682-12691	16.7	36
321	Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. <i>Macromolecular Bioscience</i> , 2007 , 7, 1187-98	5.5	35
320	Redox-Activatable ATP-Depleting Micelles with Dual Modulation Characteristics for Multidrug-Resistant Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601293	10.1	34
319	A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 3203-3210	5.4	34
318	Reproductive effects of a pegylated curcumin. <i>Reproductive Toxicology</i> , 2012 , 34, 120-4	3.4	33
317	Regulation of biodegradability and drug release behavior of aliphatic polyesters by blending. Journal of Biomedical Materials Research Part B, 2000 , 50, 528-35		33
316	Ring-Opening polymerization of Eaprolactone by rare earth coordination catalysts. I. Characteristics, kinetics, and mechanism of Eaprolactone polymerization with nd(acac)3.3H2O-ALET3 system. <i>Journal of Polymer Science Part A</i> , 1994 , 32, 597-603	2.5	33
315	Recent advances on protein separation and purification methods. <i>Advances in Colloid and Interface Science</i> , 2020 , 284, 102254	14.3	33
314	Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy. <i>Journal of Controlled Release</i> , 2020 , 321, 529-539	11.7	32
313	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. <i>Biomaterials Science</i> , 2018 , 6, 1800-1817	7.4	32
312	Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 1099-1110	6	32
311	Active Transportation of Liposome Enhances Tumor Accumulation, Penetration, and Therapeutic Efficacy. <i>Small</i> , 2020 , 16, e2004172	11	32
310	Assemblies of Peptide-Cytotoxin Conjugates for Tumor-Homing Chemotherapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1807446	15.6	32
309	Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. <i>International Journal of Pharmaceutics</i> , 2018 , 535, 164-171	6.5	31
308	A comparison of polymerization characteristics and mechanisms of Etaprolactone and trimethylene-carbonate with rare earth halides. <i>Journal of Polymer Science Part A</i> , 1997 , 35, 1339-1352	2.5	31

307	Soluble conducting polypyrrole doped with DBSA\(\mathbb{L}\)SA mixed acid. <i>Journal of Applied Polymer Science</i> , 1998 , 68, 1277-1284	2.9	31
306	Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers. <i>Small</i> , 2015 , 11, 952-62	11	30
305	Jellyfish-Shaped Amphiphilic Dendrimers: Synthesis and Formation of Extremely Uniform Aggregates. <i>Macromolecules</i> , 2014 , 47, 916-921	5.5	30
304	SERS detection of microRNA biomarkers for cancer diagnosis using gold-coated paramagnetic nanoparticles to capture SERS-active gold nanoparticles. <i>RSC Advances</i> , 2017 , 7, 52782-52793	3.7	30
303	Preparation of RGD-modified long circulating liposome loading matrine, and its in vitro anti-cancer effects. <i>International Journal of Medical Sciences</i> , 2010 , 7, 197-208	3.7	30
302	Atom-Transfer Radical Polymerization of 2-(N,N-Dimethylamino)ethyl Acrylate. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 1113-1117	4.8	30
301	Application of multifunctional BODIPY in photodynamic therapy. <i>Dyes and Pigments</i> , 2021 , 185, 108937	4.6	30
300	Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 43352-43362	9.5	30
299	Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14369		28
298	Biodegradable cationic polyester as an efficient carrier for gene delivery to neonatal cardiomyocytes. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 893-903	4.9	28
297	Controlled synthesis of Fe3O4@ZIF-8 nanoparticles for drug delivery. <i>CrystEngComm</i> , 2018 , 20, 7486-74	19 .13	28
296	Biocompatible Cyclodextrin-Based Metal Drganic Frameworks for Long-Term Sustained Release of Fragrances. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 19767-19777	3.9	27
295	Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. <i>Science China Life Sciences</i> , 2018 , 61, 436-447	8.5	27
294	Recent advances in drug delivery systems for enhancing drug penetration into tumors. <i>Drug Delivery</i> , 2020 , 27, 1474-1490	7	27
293	Encapsulation and controlled release of fragrances from functionalized porous metalorganic frameworks. <i>AICHE Journal</i> , 2019 , 65, 491-499	3.6	27
292	Tumor-Associated Macrophage and Tumor-Cell Dually Transfecting Polyplexes for Efficient Interleukin-12 Cancer Gene Therapy. <i>Advanced Materials</i> , 2021 , 33, e2006189	24	27
291	Albumin-Stabilized Metal-Organic Nanoparticles for Effective Delivery of Metal Complex Anticancer Drugs. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 34974-34982	9.5	27
290	Paraptosis-Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy. <i>Small</i> , 2018 , 14, 1702446	11	26

(2020-2014)

289	Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. <i>International Journal of Pharmaceutics</i> , 2014 , 477, 536-45	6.5	26	
288	Photocatalytic potential of bio-engineered copper nanoparticles synthesized from Ficus carica extract for the degradation of toxic organic dye from waste water: Growth mechanism and study of parameter affecting the degradation performance. <i>Materials Research Bulletin</i> , 2019 , 120, 110583	5.1	25	
287	Facile synthesis of noncytotoxic PEGylated dendrimer encapsulated silver sulfide quantum dots for NIR-II biological imaging. <i>Nanoscale</i> , 2020 , 12, 5678-5684	7.7	25	
286	Recent advantage of hyaluronic acid for anti-cancer application: a review of "3S" transition approach. <i>Carbohydrate Polymers</i> , 2020 , 238, 116204	10.3	25	
285	Bioreducible poly(amido amine)s with different branching degrees as gene delivery vectors. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 990-8	4.9	25	
284	Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. <i>Acta Biomaterialia</i> , 2014 , 10, 1847-55	10.8	24	
283	Heterojunction diodes of soluble conducting polypyrrole with porous silicon. <i>Synthetic Metals</i> , 1998 , 98, 147-152	3.6	24	
282	ZnO Quantum Dots Modified by pH-Activated Charge-Reversal Polymer for Tumor Targeted Drug Delivery. <i>Polymers</i> , 2018 , 10,	4.5	24	
281	Conjugated-Polymer-Based Nanoparticles with Efficient NIR-II Fluorescent, Photoacoustic and Photothermal Performance. <i>ChemBioChem</i> , 2019 , 20, 2793-2799	3.8	23	
2 80	Anisotropic electroactive elastomer for highly maneuverable soft robotics. <i>Nanoscale</i> , 2020 , 12, 7514-7	52.9	23	
279	New path to treating pancreatic cancer: TRAIL gene delivery targeting the fibroblast-enriched tumor microenvironment. <i>Journal of Controlled Release</i> , 2018 , 286, 254-263	11.7	23	
278	Folate-targeted optical and magnetic resonance dualmodality PCL-b-PEG micelles for tumor imaging. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2011 , 29, 427-430	3.5	23	
277	Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. <i>Biomaterials Science</i> , 2018 , 6, 3178-3188	7.4	23	
276	A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. <i>European Polymer Journal</i> , 2019 , 120, 1092	<i>6</i> 2²	22	
275	Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging. <i>ChemBioChem</i> , 2019 , 20, 1628-1636	3.8	22	
274	Tuning the Brightness and Photostability of Organic Dots for Multivalent Targeted Cancer Imaging and Surgery. <i>ACS Nano</i> , 2020 , 14, 5887-5900	16.7	22	
273	Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. <i>Nanoscale</i> , 2019 , 11, 15907-15916	7.7	22	
272	Liposomes modified with bio-substances for cancer treatment. <i>Biomaterials Science</i> , 2020 , 8, 6442-6468	7.4	22	

271	Facile synthesis of zwitterionic polyglycerol dendrimers with a tyclodextrin core as MRI contrast agent carriers. <i>Polymer Chemistry</i> , 2016 , 7, 6354-6362	4.9	22
270	D-A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6576-6584	7.3	22
269	Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. Small, 2018, 14, e1800360	11	22
268	GDC-0449 improves the antitumor activity of nano-doxorubicin in pancreatic cancer in a fibroblast-enriched microenvironment. <i>Scientific Reports</i> , 2017 , 7, 13379	4.9	21
267	Degradable cisplatin-releasing core-shell nanogels from zwitterionic poly(beta -aminoester)-graft-PEG for cancer chemotherapy. <i>Drug Delivery</i> , 2007 , 14, 279-86	7	21
266	Novel Cationic Macromonomers by Living Anionic Polymerization of (Dimethylamino)ethyl Methacrylate. <i>Macromolecules</i> , 2001 , 34, 144-150	5.5	21
265	Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal. <i>Separation and Purification Technology</i> , 2021 , 267, 118620	8.3	21
264	Progress and perspective of microneedle system for anti-cancer drug delivery. <i>Biomaterials</i> , 2021 , 264, 120410	15.6	21
263	Poly-Eglutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 1315-1327	7.3	20
262	Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. <i>Biomaterials</i> , 2019 , 213, 119195	15.6	20
261	Multifunctional FeO@C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. <i>Nanotechnology</i> , 2019 , 30, 425102	3.4	20
260	What can we learn from virus in designing nonviral gene vectors. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2011 , 29, 274-287	3.5	20
259	Near-Critical Fluid Micellization for High and Efficient Drug Loading: Encapsulation of Paclitaxel into PEG-b-PCL Micelles. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11951-11956	3.8	20
258	Progesterone facilitates cisplatin toxicity in epithelial ovarian cancer cells and xenografts. <i>Gynecologic Oncology</i> , 2008 , 110, 251-5	4.9	20
257	Virion-Mimicking Nanocapsules from pH-Controlled Hierarchical Self-Assembly for Gene Delivery. <i>Angewandte Chemie</i> , 2008 , 120, 1280-1284	3.6	20
256	Atom transfer radical polymerization of alkyl methacrylates using T-triazine as ligand. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1169-1175	2.6	20
255	Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. <i>Nature Communications</i> , 2021 , 12, 2425	17.4	20
254	Self-Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2517-2527	10.1	19

(2020-2019)

253	Plant mediated synthesis of copper nanoparticles by using Camelia sinensis leaves extract and their applications in dye degradation. <i>Ferroelectrics</i> , 2019 , 549, 61-69	0.6	19	
252	A multi-stimuli responsive nanoparticulate SN38 prodrug for cancer chemotherapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 661-670	7.3	19	
251	Targeted acid-labile conjugates of norcantharidin for cancer chemotherapy. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15804		19	
250	Advanced Carbon-based Nanoplatforms Combining Drug Delivery and Thermal Therapy for Cancer Treatment. <i>Current Pharmaceutical Design</i> , 2018 , 24, 4060-4076	3.3	19	
249	Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC. <i>Talanta</i> , 2020 , 208, 120462	6.2	19	
248	Biomedical application of manganese dioxide nanomaterials. <i>Nanotechnology</i> , 2020 , 31, 202001	3.4	18	
247	Atom Transfer Radical Polymerization of N,N-Dimethylacrylamide. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 632-636	4.8	18	
246	Ring-Opening Copolymerization of Trimethylene Carbonate and D,L-Lactide by Rare Earth Chloride. <i>Polymer Journal</i> , 1998 , 30, 168-170	2.7	18	
245	Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. <i>Journal of Controlled Release</i> , 2020 , 324, 250-259	11.7	18	
244	Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. Journal of Luminescence, 2020 , 228, 117627	3.8	18	
243	Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. <i>ACS Applied Materials & Company </i>	247	18	
242	Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. <i>Biomaterials Science</i> , 2016 , 4, 958-69	7·4	18	
241	Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent. <i>Biomaterials Science</i> , 2017 , 5, 1588-1595	7·4	17	
240	Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. <i>Polymer Chemistry</i> , 2018 , 9, 438-449	4.9	17	
239	A magnetic-based SERS approach for highly sensitive and reproducible detection of cancer-related serum microRNAs. <i>Analytical Methods</i> , 2018 , 10, 624-633	3.2	17	
238	Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding. <i>Biomaterials Science</i> , 2019 , 7, 3918-3925	7.4	17	
237	Micellization Temperature and Pressure for Polystyrene-block-polyisoprene in Subcritical and Supercritical Propane. <i>Macromolecules</i> , 2006 , 39, 8140-8144	5.5	17	
236	CK19-positive Hepatocellular Carcinoma is a Characteristic Subtype. <i>Journal of Cancer</i> , 2020 , 11, 5069-50	¥7.₹	17	

235	Dendrimers with the protocatechuic acid building block for anticancer drug delivery. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5236-5245	7.3	17
234	Environmentally friendly fabrication of new Ecyclodextrin/ZrO nanocomposite for simultaneous removal of Pb(II) and BPA from water. <i>Science of the Total Environment</i> , 2021 , 784, 147207	10.2	17
233	A neutral water-soluble mitochondria-targeting polymer. <i>Chemical Communications</i> , 2019 , 55, 10015-10	0518	16
232	A pH-responsive fragrance release system based on pseudopeptide polymeric micelles. <i>Reactive and Functional Polymers</i> , 2018 , 132, 138-144	4.6	16
231	Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. <i>Theranostics</i> , 2019 , 9, 1580-1598	12.1	14
230	Copper as the Target for Anticancer Nanomedicine. <i>Advanced Therapeutics</i> , 2019 , 2, 1800147	4.9	14
229	A porphyrin-based magnetic and fluorescent dual-modal nanoprobe for tumor imaging. <i>Polymer</i> , 2016 , 88, 94-101	3.9	14
228	Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery. <i>Science China Chemistry</i> , 2014 , 57, 633-644	7.9	14
227	A mannosylated PEIIIPP hybrid for TRAIL gene targeting delivery for colorectal cancer therapy. <i>Polymer Chemistry</i> , 2017 , 8, 5275-5285	4.9	14
226	Targeted Charge-Reversal Nanoparticles for Nuclear Drug Delivery. <i>Angewandte Chemie</i> , 2007 , 119, 508	8 ჳ. 6 09	0 ₁₄
225	Synthesis and self-assembly of thymine- and adenine-containing homopolymers and diblock copolymers. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 5995-6006	2.5	14
224	Recent Advances in the Rational Drug Design Based on Multi-target Ligands. <i>Current Medicinal Chemistry</i> , 2020 , 27, 4720-4740	4.3	14
224		4.3	14
	Chemistry, 2020 , 27, 4720-4740 Recent advances in synthesis and application of organic near-infrared fluorescence polymers.		
223	Chemistry, 2020, 27, 4720-4740 Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947 Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer	4.3	13
223	Chemistry, 2020, 27, 4720-4740 Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947 Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Delivery. ACS Applied Materials & Delivery. 14825-14838 Synthesis of degradable bifunctional dendritic polymers as versatile drug carriers. Polymer	4·3 9·5	13
223	Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947 Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Delivery. ACS Applied Materi	4·3 9·5 4·9	13 13 13

217	SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. <i>Journal of Drug Targeting</i> , 2019 , 27, 306-31	4 5·4	13
216	Improving safety of cancer immunotherapy via delivery technology. <i>Biomaterials</i> , 2021 , 265, 120407	15.6	13
215	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
214	Synthesis, self-assembly and drug release behaviors of a bottlebrush polymer-HCPT prodrug for tumor chemotherapy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 278-284	6	12
213	Self-assembly and pH-responsive properties of poly(L-glutamic acid-r-L-leucine) and poly(L-glutamic acid-r-L-leucine)-b-polysarcosine. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2015 , 33, 1186-119	9 3 .5	12
212	All-Aqueous Direct Deposition of Fragrance-Loaded Nanoparticles onto Fabric Surfaces by Electrospraying. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2590-2596	4.3	12
211	Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 182, 110373	6	12
210	Magnetic-capture-based SERS detection of multiple serum microRNA biomarkers for cancer diagnosis. <i>Analytical Methods</i> , 2019 , 11, 783-793	3.2	12
209	Encapsulation of Highly Volatile Fragrances in Y Zeolites for Sustained Release: Experimental and Theoretical Studies. <i>ACS Omega</i> , 2020 , 5, 31925-31935	3.9	12
208	CelluMOFs: Green, Facile, and Flexible Metal-Organic Frameworks for Versatile Applications. <i>Advanced Functional Materials</i> ,2105395	15.6	12
207	Self-Activated Cascade-Responsive Sorafenib and USP22 shRNA Co-Delivery System for Synergetic Hepatocellular Carcinoma Therapy. <i>Advanced Science</i> , 2021 , 8, 2003042	13.6	12
206	Effects of chirality on gene delivery efficiency of polylysine. <i>Chinese Journal of Polymer Science</i> (English Edition), 2016 , 34, 94-103	3.5	11
205	Enzyme-Activatable Interferon-Poly(\(\text{\tint{\tex{\tex	6.9	11
204	Synthesis and Properties of a Biodegradable Dendritic Magnetic Resonance Imaging Contrast Agent. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 91-96	4.9	11
203	Multilayered Nanoparticles for Controlled Release of Paclitaxel Formed by Near-Critical Micellization of Triblock Copolymers. <i>Macromolecules</i> , 2012 , 45, 4809-4817	5.5	11
202	Review of the research on anti-protein fouling coatings materials. <i>Progress in Organic Coatings</i> , 2020 , 147, 105860	4.8	11
201	Co-delivery of chemotherapeutic drugs and cell cycle regulatory agents using nanocarriers for cancer therapy. <i>Science China Materials</i> , 2021 , 64, 1827-1848	7.1	11
200	Jumping the nuclear envelop barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. <i>Journal of Controlled Release</i> , 2016 , 234, 90-7	11.7	11

199	Mixed matrix membranes composed of WS2 nanosheets and fluorinated poly(2,6-dimethyl-1,4-phenylene oxide) via Suzuki reaction for improved CO2 separation. <i>Journal of Membrane Science</i> , 2018 , 565, 226-232	9.6	11
198	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
197	Guanidinoamidized linear polyethyleneimine for gene delivery. <i>Chinese Journal of Polymer Science</i> (English Edition), 2015 , 33, 908-919	3.5	10
196	Autophagy-inhibiting polymer as an effective nonviral cancer gene therapy vector with inherent apoptosis-sensitizing ability. <i>Biomaterials</i> , 2020 , 255, 120156	15.6	10
195	Scar Tissue-Targeting Polymer Micelle for Spinal Cord Injury Treatment. Small, 2020, 16, e1906415	11	10
194	Functionalized Nanoparticles Efficiently Enhancing the Targeted Delivery, Tumor Penetration, and Anticancer Activity of 7-Ethyl-10-Hydroxycamptothecin. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701	148.1	10
193	A Near-Infrared Triggered Intracellular pH Regulative PAMAM/O-nitrobenzaldehyde Coated UCNPs for Cancer Therapy. <i>Integrated Ferroelectrics</i> , 2019 , 199, 85-94	0.8	10
192	Thioether profragrances: parameters influencing the performance of precursor-based fragrance delivery in functional perfumery. <i>Chemistry and Biodiversity</i> , 2014 , 11, 1700-33	2.5	10
191	A new tetradentate ligand for atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3553-3562	2.5	10
190	Synthesis of comb-branched polyacrylamide with cationic poly[(2-dimethylamino)ethyl methacrylate dimethylsulfate] quat. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2394-2405	2.5	10
189	Preparation of porous sulfonated poly(styrene-divinylbenzene) microspheres and its application in hydrophilic and chiral separation. <i>Talanta</i> , 2020 , 210, 120586	6.2	10
188	Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. <i>Journal of Controlled Release</i> , 2021 , 330, 362-371	11.7	10
187	Preparation of high specific surface area and high adsorptive activated carbon by KOH activation. <i>Integrated Ferroelectrics</i> , 2019 , 199, 22-29	0.8	9
186	Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102058	6	9
185	Glycyrrhizin Acid and Glycyrrhetinic Acid Modified Polyethyleneimine for Targeted DNA Delivery to Hepatocellular Carcinoma. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	9
184	G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy. <i>Radiotherapy and Oncology</i> , 2012 , 104, 243-8	5.3	9
183	Controlled/"Living" Radical Polymerization of Vinyl Acetate. ACS Symposium Series, 2009, 139-157	0.4	9
182	Template atom transfer radical polymerization of a diaminopyrimidine-derivatized monomer in the presence of a uracil-containing polymer. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 6607-6615	2.5	9

(2008-2021)

181	Ultrasonic Cavitation-Assisted and Acid-Activated Transcytosis of Liposomes for Universal Active Tumor Penetration. <i>Advanced Functional Materials</i> , 2021 , 31, 2102786	15.6	9	
180	Synthesis of an esterase-sensitive degradable polyester as facile drug carrier for cancer therapy. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 507-515	2.5	9	
179	Gene Delivery: Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery (Adv. Mater. 9/2016). <i>Advanced Materials</i> , 2016 , 28, 1714-1714	24	9	
178	CoreBhell Upconversion Nanoparticle@MetalDrganic Framework Nanoprobes for Targeting and Drug Delivery. <i>Integrated Ferroelectrics</i> , 2020 , 206, 66-78	0.8	9	
177	Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. <i>Journal of Controlled Release</i> , 2021 , 330, 992-1003	11.7	9	
176	Dynamic Covalent C?C Bond, Cross-Linked, Injectable, and Self-Healable Hydrogels via Knoevenagel Condensation. <i>Biomacromolecules</i> , 2020 , 21, 1234-1242	6.9	8	
175	Preparation and application of PGMA-DVB microspheres via surface-modification with quaternary and phenylboronic acid moiety. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 188, 110807	6	8	
174	Macrophages as an active tumour-targeting carrier of SN38-nanoparticles for cancer therapy. <i>Journal of Drug Targeting</i> , 2018 , 26, 458-465	5.4	8	
173	The Effect of Different Porogens on Porous PMMA Microspheres by Seed Swelling Polymerization and Its Application in High-Performance Liquid Chromatography. <i>Materials</i> , 2018 , 11,	3.5	8	
172	Preparation and application of fluorescence dendritic macromolecular nanoparticles. <i>Integrated Ferroelectrics</i> , 2019 , 197, 99-110	0.8	8	
171	High-Pressure Micellar Solutions of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points. <i>Macromolecules</i> , 2009 , 42, 3823-3826	5.5	8	
170	Research status and development trend of three-dimensional colloidal crystals. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 96, 34-58	6.3	8	
169	Preparation of photosensitive diazotized poly (vinyl alcohol-b-styrene) covalent capillary coatings for capillary electrophoresis separation of proteins. <i>Journal of Chromatography A</i> , 2019 , 1593, 174-182	4.5	8	
168	Chitosan composite hydrogels cross-linked by multifunctional diazo resin as antibacterial dressings for improved wound healing. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 1890-1898	5.4	8	
167	Bioinspired nanochannels based on polymeric membranes. <i>Science China Materials</i> , 2021 , 64, 1320-1342	27.1	8	
166	Hydroxyl-tolerated polymerization of N-phenoxycarbonyl ⊞mino acids: A simple way to polypeptides bearing hydroxyl groups. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 907-916	2.5	7	
165	Degradable water soluble hyperbranched polymers for drug delivery. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e76-8	11.7	7	
164	Amidization of doxorubicin alleviates doxorubicin-induced contractile dysfunction and reduced survival in murine cardiomyocytes. <i>Toxicology Letters</i> , 2008 , 178, 197-201	4.4	7	

163	Vibration and X-ray photoelectron spectroscopies of FeCl3-doped poly(p-diethynylbenzene). <i>European Polymer Journal</i> , 2002 , 38, 2057-2061	5.2	7
162	The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuli-Responsive Drug Delivery Systems <i>Small Methods</i> , 2022 , e2101437	12.8	7
161	Design and challenge of cancer nanomedicine. Scientia Sinica Chimica, 2019, 49, 1192-1202	1.6	7
160	Hydrogel vectors based on peptide and peptide-like substances: For treating bacterial infections and promoting wound healing. <i>Applied Materials Today</i> , 2021 , 25, 101224	6.6	7
159	An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. <i>Biomaterials</i> , 2021 , 274, 120893	15.6	7
158	Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks. <i>Chinese Chemical Letters</i> , 2021 , 32, 1988-1992	8.1	7
157	Mucus Penetrating and cell-binding Polyzwitterionic Micelles as Potent Oral Nanomedicine for Cancer Drug Delivery <i>Advanced Materials</i> , 2022 , e2109189	24	7
156	Preparation of pH-responsive cellulose derivative with surfactant-property for methyl 1-Naphthylacetate controlled release. <i>Industrial Crops and Products</i> , 2019 , 135, 57-63	5.9	6
155	Tumor microenvironment-responsive polymer with chlorin e6 to interface hollow mesoporous silica nanoparticles-loaded oxygen supply factor for boosted photodynamic therapy. <i>Nanotechnology</i> , 2020 , 31, 305709	3.4	6
154	Fluorescent carbon dots grafted hyperbranched glycidyl ether. <i>Integrated Ferroelectrics</i> , 2019 , 199, 46-5	5b .8	6
153	Redox and pH double stimulus-responsive mesoporous silica nanoparticles for drug delivery. <i>Ferroelectrics</i> , 2019 , 549, 1-11	0.6	6
152	pH Responsive Behavior of Fe3O4@PDEA-PEGMA Core-Shell Hybrid Magnetic Nanoparticles. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2014 , 63, 487-492	3	6
151	High-Pressure Micellar Solutions of Symmetric and Asymmetric StyreneDiene Diblocks in Compressible Near-Critical Solvents: Micellization Pressures and Cloud Pressures Respond but Micellar Cloud Pressures Insensitive to Copolymer Molecular Weight, Concentration, and Block	5.5	6
150	Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127602	12.8	6
149	Topical application of HA-g-TEMPO accelerates the acute wound healing via reducing reactive oxygen species (ROS) and promoting angiogenesis. <i>International Journal of Pharmaceutics</i> , 2021 , 597, 120328	6.5	6
148	Dose-Independent Transfection of Hydrophobized Polyplexes. <i>Advanced Materials</i> , 2021 , 33, e2102219	24	6
147	Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. <i>Talanta</i> , 2021 , 221, 121493	6.2	6
146	Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. <i>Analyst, The</i> , 2021 , 146, 1320-1325	5	6

145	Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. <i>Nano Letters</i> , 2021 , 21, 2199-2206	11.5	6
144	A review of the design of packing materials for ion chromatography. <i>Journal of Chromatography A</i> , 2021 , 1653, 462313	4.5	6
143	Sustainable fabrication of hematite (Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes. <i>Journal of Molecular Liquids</i> , 2021 , 339, 116729	6	6
142	Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-£tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. <i>Journal of Zhejiang University: Science B</i> , 2019 , 20, 273-281	4.5	5
141	A novel photothermo-responsive nanocarrier for the controlled release of low-volatile fragrances <i>RSC Advances</i> , 2020 , 10, 14867-14876	3.7	5
140	N-Oxide polymer-cupric ion nanogels potentiate disulfiram for cancer therapy. <i>Biomaterials Science</i> , 2020 , 8, 1726-1733	7.4	5
139	Synthesis of OA-NaYF4:Yb,Er and Its Cytotoxicity. Integrated Ferroelectrics, 2019, 199, 143-147	0.8	5
138	Platinum (IV)-coordinate polymers for cancer drug delivery. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e108-9	11.7	5
137	Nanomedicine from amphiphilizedprodrugs: Concept and clinical translation. <i>Advanced Drug Delivery Reviews</i> , 2021 , 179, 114027	18.5	5
136	Facile synthesis of Zr4+ substituted Mn0.2Co0.8Fe2🖬O4 nanoparticles and their composites with reduced graphene oxide for enhanced photocatalytic performance under visible light irradiation. <i>Synthetic Metals</i> , 2021 , 277, 116766	3.6	5
135	Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. <i>Journal of Controlled Release</i> , 2021 , 330, 842-850	11.7	5
134	Virus-mimetic DNA-ejecting polyplexes for efficient intracellular cancer gene delivery. <i>Nano Today</i> , 2021 , 39, 101215	17.9	5
133	Antibacterial material surfaces/interfaces for biomedical applications. <i>Applied Materials Today</i> , 2021 , 25, 101192	6.6	5
132	Application of PEGylated graphene quantum dots in cell imaging. Ferroelectrics, 2019, 547, 21-26	0.6	4
131	Construction of Dimeric Drug-Loaded Polymeric Micelles with High Loading Efficiency for Cancer Therapy. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	4
130	Synthesis and Characterization of a Water-Soluble Fluorescent Polymer Based on Fluorene and Thiophene. <i>Integrated Ferroelectrics</i> , 2019 , 199, 118-122	0.8	4
129	Surface modification of NaYF4:Yb,Er nanomaterials. <i>Integrated Ferroelectrics</i> , 2019 , 199, 138-142	0.8	4
128	Hepatic-targeted gene delivery using cationic mannan vehicle. <i>Molecular Pharmaceutics</i> , 2014 , 11, 3322	?-3 .6	4

127	Charge-Reversal Polymers for Biodelivery 2014 , 223-242		4
126	Amphiphilic block copolymer of SN38 prodrugs by atom transfer radical polymerization: Synthesis, kinetic studies and self-assembly. <i>Journal of Controlled Release</i> , 2015 , 213, e124	11.7	4
125	Molecularly Precise Dendrimer D rug Conjugates with Tunable Drug Release for Cancer Therapy. <i>Angewandte Chemie</i> , 2014 , 126, 11129-11135	3.6	4
124	Vibration and photoelectron spectroscopies of iodine-doped poly(p-diethynylbenzene). <i>European Polymer Journal</i> , 2002 , 38, 2349-2353	5.2	4
123	Synthesis of Styrenic-Terminated Methacrylate Macromonomers by Nitroanion-Initiated Living Anionic Polymerization. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1399-1404	4.8	4
122	Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare. <i>Applied Materials Today</i> , 2022 , 26, 101396	6.6	4
121	????????“??”??. <i>Scientia Sinica Chimica</i> , 2011 , 41, 281-303	1.6	4
120	Effect of Cationic Charge Density on Transcytosis of Polyethylenimine. <i>Biomacromolecules</i> , 2021 ,	6.9	4
119	A modular ROS-responsive platform co-delivered by 10-hydroxycamptothecin and dexamethasone for cancer treatment. <i>Journal of Controlled Release</i> , 2021 , 340, 102-113	11.7	4
118	Analysis of proteins by capillary electrophoresis with a novel diazoresin/t (Capillary coating method. <i>Ferroelectrics</i> , 2020 , 563, 45-51	0.6	4
117	Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100125	10.1	4
116	Synthesis, characterization and photocatalytic activity of iron nanoparticles from Ficus carica peels via biological method. <i>Ferroelectrics</i> , 2019 , 548, 89-96	0.6	4
115	A design strategy for DA conjugated polymers for NIR-II fluorescence imaging. <i>Polymer Chemistry</i> , 2021 , 12, 4707-4713	4.9	4
114	Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. <i>Biomaterials Science</i> , 2021 , 9, 2384-2412	7.4	4
113	Preparation of pocket shaped microfiltration membranes with binary porous structures. <i>Soft Matter</i> , 2018 , 14, 8660-8665	3.6	4
112	Polyplex nanovesicles of single strand oligonucleotides for efficient cytosolic delivery of biomacromolecules. <i>Nano Today</i> , 2021 , 39, 101221	17.9	4
111	Excipient-free nanodispersion of 7-ethyl-10-hydroxycamptothecin exerts potent therapeutic effects against pancreatic cancer cell lines and patient-derived xenografts. <i>Cancer Letters</i> , 2019 , 465, 36-44	9.9	3
110	Thermally Responsive Anti-Protein Adsorption Coated Capillary for Electrophoretic Analysis of Proteins. <i>ChemistrySelect</i> , 2020 , 5, 11854-11861	1.8	3

(2021-2020)

109	A Smart Magnetic Responsive Microfiltration Membrane Based on Three-Dimensionally Inverse Colloidal Crystal. <i>Integrated Ferroelectrics</i> , 2020 , 206, 112-121	0.8	3
108	Synthesis of fullerene-modified P(St-MMA-AA) colloids and optical performance in colloidal crystals. <i>Integrated Ferroelectrics</i> , 2019 , 197, 43-48	0.8	3
107	Fabrication of PEGylated BiS Nanosheets As a Multifunctional Platform for Multimodal Diagnosis and Combination Therapy for Cancer <i>ACS Applied Bio Materials</i> , 2019 , 2, 3870-3876	4.1	3
106	Preparation and properties of porous P(St-MMA-AA) microsphere anti-glare film. <i>Progress in Organic Coatings</i> , 2019 , 137, 105287	4.8	3
105	Preparation and Imaging Study of Tumor-targeting MRI Contrast Agent Based on Fe3O4 Nanoparticles. <i>Chemistry Letters</i> , 2015 , 44, 1771-1773	1.7	3
104	Chapter 11:Polymer-Based Prodrugs for Cancer Chemotherapy. <i>RSC Polymer Chemistry Series</i> , 2013 , 24.	5-2 6 0	3
103	Ecyclodextrin-based biodegradable dendrimers for drug delivery. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e89-90	11.7	3
102	Fibrous pore structure of silk fabric, cattle leather and wallpaper base paper and their adsorption properties. <i>Scientia Sinica Chimica</i> , 2019 , 49, 619-624	1.6	3
101	Synthesis of poly-tetrahydropyrimidine antibacterial polymers and research of their basic properties <i>Biomaterials Science</i> , 2022 ,	7.4	3
100	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. <i>Biomaterials</i> , 2021 , 278, 121176	15.6	3
99	A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates. Journal of Materials Chemistry B, 2017 , 5, 8754-8760	7.3	3
98	Vanadium-based nanomaterials for cancer diagnosis and treatment. <i>Biomedical Materials (Bristol)</i> , 2020 , 16, 014101	3.5	3
97	Single-step formulation of levodopa-based nanotheranostics - strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics. <i>Biomaterials Science</i> , 2020 , 8, 1615-1621	7.4	3
96	On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics - see it and treat it. <i>Biomaterials Science</i> , 2020 , 8, 5210-5218	7·4	3
95	Silica Nanoparticle Deposition on Natural Fibrous Substrates: Kinetic and Thermodynamic Studies. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 9500-9507	3.9	3
94	Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. Journal of Materials Chemistry B, 2021 , 9, 8594-8603	7.3	3
93	Preparation and biomedical application of injectable hydrogels. Materials Chemistry Frontiers,	7.8	3
92	Prodrug Nanomedicine Inhibits Chemotherapy-Induced Proliferative Burst by Altering the Deleterious Intercellular Communication. <i>ACS Nano</i> , 2021 , 15, 781-796	16.7	3

91	Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. <i>Biomaterials</i> , 2021 , 277, 121130	15.6	3
90	Heterogeneous activation of peroxymonosulfate using superparamagnetic 配D-CoFe2O4 catalyst for the removal of endocrine-disrupting bisphenol A: Performance and degradation mechanism. Separation and Purification Technology, 2021 , 279, 119752	8.3	3
89	Multipotent Poly(Tertiary Amine-Oxide) Micelles for Efficient Cancer Drug Delivery <i>Advanced Science</i> , 2022 , e2200173	13.6	3
88	Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. <i>Coordination Chemistry Reviews</i> , 2022 , 468, 214609	23.2	3
87	Analysis of factors affecting preparation of magnetic Fe3O4@PS nanospheres. <i>Integrated Ferroelectrics</i> , 2019 , 198, 137-141	0.8	2
86	Magnetic Core-shell nanoparticles with molecularly imprinted polymers for selective adsorption and separation of adenine. <i>Ferroelectrics</i> , 2019 , 546, 109-119	0.6	2
85	Preparation of hydroxypropyl cellulose-poly (2-Methacryloyloxyethyl phosphorylcholine) coating for the analysis of proteins by capillary electrophoresis. <i>Ferroelectrics</i> , 2019 , 547, 90-96	0.6	2
84	Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. Journal of Drug Delivery Science and Technology, 2020 , 56, 101522	4.5	2
83	Multifunctional Carbon Dots Based Nanoparticles Coupling Optical and pH-Dependent Drug Release Properties as Drug Delivery Platforms. <i>Integrated Ferroelectrics</i> , 2020 , 206, 151-159	0.8	2
82	Zwitterionic poly(lysine methacrylate) brush as an effective carrier for drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e27-8	11.7	2
81	Paclitaxel improved gene transfection efficiency through cell synchronization in SW480 cells. Journal of Controlled Release, 2015 , 213, e83	11.7	2
80	Synthesis and characterization of a novel dendritic magnetic resonance imaging contrast agent. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e256-7	11.7	2
79	Pathogenic reactions of the ovarian surface epithelium to ovulation, dimethylbenzanthracene, and estrogen are negated by vitamin E. <i>Reproductive Sciences</i> , 2008 , 15, 839-45	3	2
78	Magnetic Nanoparticle Supported Catalyst for Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>ACS Symposium Series</i> , 2006 , 71-84	0.4	2
77	Highly active rare earth catalysts for the solution polymerization of Etaprolactone. <i>Polymer Bulletin</i> , 1996 , 37, 21-28	2.4	2
76	A site-oriented nanosystem for active transcellular chemo-immunotherapy to prevent tumor growth and metastasis. <i>Science China Materials</i> , 2022 , 65, 1391	7.1	2
75	Design of crown ether based micelles and their anti-tumor properties by perturbing potassium ion homeostasis. <i>Materials and Design</i> , 2021 , 211, 110159	8.1	2
74	A nanotherapeutic strategy to overcome chemoresistance to irinotecan/7-ethyl-10-hydroxy-camptothecin in colorectal cancer. <i>Acta Biomaterialia</i> , 2021 , 137, 262-26.	2 ^{10.8}	2

73	Chapter 3:Rational Design of Translational Nanocarriers. RSC Polymer Chemistry Series, 2013, 32-62	1.3	2
72	Agar-based ZIF-90 antibacterial hydrogels for biomedical applications. <i>Ferroelectrics</i> , 2020 , 563, 12-20	0.6	2
71	Preparation of poly (KH570-co-DVB) microspheres and application in HPLC for separation of benzene and benzene homologs. <i>Ferroelectrics</i> , 2020 , 562, 145-151	0.6	2
70	Preparation and application of carbon quantum dots filled hollow mesoporous silica nanospheres. <i>Ferroelectrics</i> , 2019 , 548, 133-142	0.6	2
69	Mild polyaddition and polyalkylation based on the carbon-carbon bond formation reaction of active methylene <i>RSC Advances</i> , 2019 , 9, 40455-40461	3.7	2
68	The Stable Ordered Nanochannels Based on Block Copolymer with Acid-Cleavable Junction and UV Crosslink Group. <i>Integrated Ferroelectrics</i> , 2020 , 206, 48-55	0.8	2
67	Encapsulation of fragrances in micron-size silk fibroin carriers via coaxial electrohydrodynamic techniques. <i>Materials Chemistry and Physics</i> , 2021 , 260, 124167	4.4	2
66	Hydrogen sulfide-activatable prodrug-backboned block copolymer micelles for delivery of chemotherapeutics. <i>Polymer Chemistry</i> , 2021 , 12, 4167-4174	4.9	2
65	Semiconductor small molecule IHIC/ITIC applied to photothermal therapy and photoacoustic imaging of tumors. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2021 , 221, 112257	6.7	2
64	Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer <i>Biomaterials</i> , 2022 , 283, 121458	15.6	2
63	A ROS-responsive synergistic delivery system for combined immunotherapy and chemotherapy. <i>Materials Today Bio</i> , 2022 , 100284	9.9	2
62	Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. <i>Materials Today Chemistry</i> , 2022 , 25, 100948	6.2	2
61	Preparation of diazoresin/graphene oxide covalent coated capillary for separation of proteins by capillary electrophoresis. <i>Ferroelectrics</i> , 2019 , 546, 74-84	0.6	1
60	A novel brush-shaped copolymer for drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e120	11.7	1
59	Synthesis and properties of zwitterionic dendrimer as drug and imaging probe carrier. <i>Journal of Controlled Release</i> , 2015 , 213, e144-5	11.7	1
58	A theoretical hypothesis on co-precipitation of hydrophobic antitumor drug and amphiphilic block copolymers. <i>Journal of Controlled Release</i> , 2015 , 213, e98-9	11.7	1
57	Preparation and Evaluation of Zwitterionic Polymer Coated Capillary Columns for Analysis of Proteins by Capillary Electrophoresis. <i>Integrated Ferroelectrics</i> , 2019 , 199, 77-84	0.8	1
56	Multicomponent cascade reaction catalyzed by basic alumina. <i>Integrated Ferroelectrics</i> , 2019 , 198, 55-60	00.8	1

55	Elastin-like polypeptide fusion for precision design of protein-polymer conjugates with improved pharmacology. <i>Science China Materials</i> , 2015 , 58, 767-768	7.1	1
54	Self-Assembly of Polymers into Soft Nanoparticles and Nanocapsules 2012,		1
53	Deuteration impact on micellization pressure and cloud pressure of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in compressible propane. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 15156-61	3.4	1
52	A Capping Method for Nitrogen Anion Initiated Living Anionic Polymerization for Synthesizing Alkyl Methacrylate Macromonomers. <i>Macromolecules</i> , 2001 , 34, 376-381	5.5	1
51	A breathing A4 paper by in situ growth of green metal®rganic frameworks for air freshening and cleaning. Chinese Journal of Chemical Engineering, 2021,	3.2	1
50	The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. <i>Cell Death and Disease</i> , 2021 , 12, 1084	9.8	1
49	Mitochondria-targeted polymer-celastrol conjugate with enhanced anticancer efficacy <i>Journal of Controlled Release</i> , 2022 , 342, 122-133	11.7	1
48	Facile light-assisted preparation of reusable magnetic Fe3O4@SiO2@Chitosan composite for adsorption of dyes. <i>Ferroelectrics</i> , 2020 , 562, 28-38	0.6	1
47	Preparation of Pyridine Polyionic Liquid Porous Microspheres and Their Application in Organic Dye Adsorption. <i>Journal of Polymers and the Environment</i> ,1	4.5	1
46	Fabrication and characteristics of VOx microbolometer integrated into gold black absorbing layer. <i>Ferroelectrics</i> , 2021 , 579, 70-76	0.6	1
45	Cancer Therapy: Esterase-Activated Charge-Reversal Polymer for Fibroblast-Exempt Cancer Gene Therapy (Adv. Mater. 48/2016). <i>Advanced Materials</i> , 2016 , 28, 10578-10578	24	1
44	Polymeric Micelle-Based Nanomedicine 2016 , 99-116		1
43	Targeted Dendrimers for Cancer Diagnosis and Therapy 2016 , 61-86		1
42	A novel diazoresin/polystyrene-poly(ethylene oxide) covalent capillary coating for the analysis of proteins by capillary electrophoresis. <i>Ferroelectrics</i> , 2019 , 548, 15-25	0.6	1
41	Development and application of ultrasound contrast agents in biomedicine. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7633-7661	7.3	1
40	Preparation and anti-tumor application of hyaluronic acid-based material for disulfide and copper ions co-delivery. <i>Science China Technological Sciences</i> , 2021 , 64, 2023-2032	3.5	1
39	Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. <i>ACS Applied Materials & Description</i> (13), 44028-44040	9.5	1
38	Microporous poly(glycidyl methacrylate-co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. <i>Polymer Chemistry</i> ,	4.9	1

(2021-2019)

37	Self-assembled covalent capillary coating of diazoresin/sodium polystyrene sulfonate for analysis of proteins by capillary electrophoresis. <i>Ferroelectrics</i> , 2019 , 546, 188-196	0.6	0
36	Research on the modification of PAN hollow fiber membrane with high heavy metal ions adsorption. <i>Ferroelectrics</i> , 2019 , 547, 121-128	0.6	Ο
35	Mn-dox metal-organic nanoparticles for cancer therapy and magnetic resonance imaging. <i>Dyes and Pigments</i> , 2022 , 199, 110080	4.6	0
34	A tyrosinase-responsive tumor-specific cascade amplification drug release system for melanoma therapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 9406-9412	7.3	Ο
33	Effect of polyacrylonitrile hollow fiber modified membrane on heavy metal ion adsorption. <i>Ferroelectrics</i> , 2020 , 563, 95-102	0.6	0
32	Vanadium Oxide Thermal Sensitive Thin Film with TiN Absorbing Layer for Uncooled Infrared Bolometer. <i>Integrated Ferroelectrics</i> , 2021 , 216, 43-49	0.8	Ο
31	Synthesis of MoS2 nanosheets drug delivery system and its drug release behaviors. <i>Ferroelectrics</i> , 2021 , 578, 31-39	0.6	0
30	pH-responsive dendrimer-functionalized cotton cellulose nanocrystals for effective cancer treatment. <i>Ferroelectrics</i> , 2021 , 578, 108-112	0.6	Ο
29	Preparation and application of urea-based derivatized <code>tyclodextrin</code> chiral stationary phase based on diazotized silica microspheres <i>Journal of Chromatography A</i> , 2022 , 1669, 462932	4.5	0
28	Synthesis of 3,5-dichlorobenzene isocyanate-derived tyclodextrin and 3,5-dimethyl phenyl isocyanate-derived tyclodextrin chiral stationary phases and their applications in the separation of chiral compounds. <i>Separation and Purification Technology</i> , 2022 , 294, 121147	8.3	Ο
27	Performance study of chlorophyll-extracting waste oil used as rubber operating oil. <i>Ferroelectrics</i> , 2019 , 547, 207-216	0.6	
26	Preparation and application of multi-walled carbon nanotubes and metal cobalt nanoparticles composite carbon fiber electrodes. <i>Ferroelectrics</i> , 2018 , 527, 157-161	0.6	
25	A tumor-targeting MRI contrast agent based on hypoxia and pH-responsive nanogel. <i>Journal of Controlled Release</i> , 2015 , 213, e104-5	11.7	
24	In vitro inhibition of cancer stem cells by biguanidine-based macromolecular drug. <i>Journal of Controlled Release</i> , 2015 , 213, e79	11.7	
23	Chapter 13:Near-Critical Micellization for Nanomedicine: Enhanced Drug Loading, Reduced Burst Release. <i>RSC Polymer Chemistry Series</i> , 2013 , 281-301	1.3	
22	High-Molecular-Weight [L]-Polylactides Containing Pendant Functional Groups. <i>ACS Symposium Series</i> , 2001 , 129-134	0.4	
21	Preparation of poly(DMA-co-DBA) and its application in gene delivery. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> ,1-10	3	
20	Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. <i>Biomaterial Engineering</i> , 2021 , 1-21	0.3	

19 Transcytosis-inducing biomaterials for actively translocating nanomedicines **2021**,

ŕ		
18	Current Status and Future Developments in Synthetic Peptides. <i>Current Organic Chemistry</i> , 2018 , 22, 1951-1958	1.7
17	Study on Graphene Oxide-Modified Polyacrylonitrile Hollow Fiber Membrane. <i>Integrated Ferroelectrics</i> , 2020 , 207, 62-74	0.8
16	Preparation of SrSnO3:Nd in near-infrared secondary region. Ferroelectrics, 2020, 562, 46-50	0.6
15	Resveratrol Reverses Social Deficits and Metabolic Dysfunction of Mice Model for Negative Symptoms of Schizophrenia. <i>Integrated Ferroelectrics</i> , 2021 , 215, 91-102	0.8
14	Preparation of Temperature-Sensitive Inverse Macroporous Membranes Using Silica Spheres as a Template. <i>Integrated Ferroelectrics</i> , 2021 , 215, 267-277	0.8
13	Diazo Resin and Acidified Carbon Nanotube Modified Polyacrylonitrile Hollow Fiber Membrane. <i>Integrated Ferroelectrics</i> , 2021 , 215, 195-202	0.8
12	Synthesis and Photothermal Application of D-A-D Conjugated Small Molecular Nanoparticles. <i>Integrated Ferroelectrics</i> , 2021 , 215, 47-52	0.8
11	Synthesis and enantioseparation characteristics of a novel tyclodextrin chiral stationary phase based on diazotized silica in HPLC. <i>Ferroelectrics</i> , 2021 , 579, 199-208	0.6
10	Study on acidified carbon nanotubes modified polyacrylonitrile hollow fiber membrane. <i>Ferroelectrics</i> , 2021 , 578, 169-178	0.6
9	Microfluidics Applications in Cancer Drug Delivery 2016 , 117-148	
8	Binding and Release of Reactive Oxygen Species-Responsive Charge Reversal Cationic Polymers with DNA Studied by Surface Plasmon Resonance. <i>Polymer Science - Series A</i> , 2019 , 61, 847-854	1.2
7	Preparation of multilayered core-shell TiO2@DR@SiO2 composites and investigation of its photocatalytic performance. <i>Integrated Ferroelectrics</i> , 2018 , 190, 142-148	0.8
6	The surface property of PTFE and PVDF liquid marbles. <i>Journal of Polymer Research</i> , 2022 , 29, 1	2.7
5	Role of polyplex charge density in lipopolyplexes <i>Nanoscale</i> , 2022 , 14, 7174-7180	7.7
4	Virus-Mimetic DNA-Ejecting Polyplexes for Cancer Gene Delivery. <i>Biomaterial Engineering</i> , 2022 , 395-4	150.3
3	Synthesis of Dual-Response MnO2 Nanospheres as Multifunctional Drug Carriers. <i>Integrated Ferroelectrics</i> , 2022 , 226, 82-88	0.8
2	Preparation of Modified Porous Polyionic Liquid Microspheres and Their Application in High Performance Liquid Chromatography. <i>Integrated Ferroelectrics</i> , 2022 , 226, 140-147	0.8

Preparation and Application of Novel Mesoporous Silica Microsphere-Based Thin Layer Chromatography Plate. *Integrated Ferroelectrics*, **2022**, 226, 58-62

0.8