
Shiping Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Function of pHâ€dependent transcription factor PacC in regulating development, pathogenicity, and mycotoxin biosynthesis of phytopathogenic fungi. FEBS Journal, 2022, 289, 1723-1730.	4.7	25
2	Protein sulfenylation contributes to oxidative burst-triggered responses during the interaction between Botrytis cinerea and Nicotiana benthamiana. Journal of Proteomics, 2022, 251, 104423.	2.4	6
3	Highly efficient removal of patulin using immobilized enzymes of Pseudomonas aeruginosa TF-06 entrapped in calcium alginate beads. Food Chemistry, 2022, 377, 131973.	8.2	17
4	Mushroom alcohol controls gray mold caused by Botrytis cinerea in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. Postharvest Biology and Technology, 2022, 186, 111843.	6.0	14
5	m ⁶ Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology Journal, 2022, 20, 1447-1455.	8.3	31
6	Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 2022, 9, uhac066.	6.3	29
7	Application of -omic technologies in postharvest pathology: recent advances and perspectives. Current Opinion in Food Science, 2022, 45, 100820.	8.0	6
8	Sodium pyrosulfite inhibits the pathogenicity of Botrytis cinerea by interfering with antioxidant system and sulfur metabolism pathway. Postharvest Biology and Technology, 2022, 189, 111936.	6.0	8
9	Effects of 1-methylcyclopropene on disease resistance of red-fleshed kiwifruit during long-term cold storage and the possible mechanisms. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 182-195.	1.3	3
10	Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chemistry, 2021, 342, 128309.	8.2	38
11	The transcription factor SIHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Horticulture Research, 2021, 8, 83.	6.3	42
12	N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22, 168.	8.8	72
13	Characterization of a short-chain dehydrogenase/reductase and its function in patulin biodegradation in apple juice. Food Chemistry, 2021, 348, 129046.	8.2	44
14	<scp>PeMetR</scp> â€mediated sulfur assimilation is essential for virulence and patulin biosynthesis in <i>Penicillium expansum</i> . Environmental Microbiology, 2021, 23, 5555-5568.	3.8	10
15	Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH, 2021, 2, 330-340.	3.9	25
16	Arginine Methyltransferase PeRmtC Regulates Development and Pathogenicity of Penicillium expansum via Mediating Key Genes in Conidiation and Secondary Metabolism. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /C	Dvællack 1	0 Tuf350 137 T
17	Magnolol inhibits gray mold on postharvest fruit by inducing autophagic activity of Botrytis cinerea. Postharvest Biology and Technology, 2021, 180, 111596.	6.0	32

¹⁸Advances and Strategies for Controlling the Quality and Safety of Postharvest Fruit. Engineering,
2021, 7, 1177-1184.6.751

#	Article	IF	CITATIONS
19	Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biology and Technology, 2020, 159, 111038.	6.0	58
20	Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved. Postharvest Biology and Technology, 2020, 161, 111070.	6.0	37
21	SIFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. Plant Physiology, 2020, 184, 2168-2181.	4.8	19
22	p-Coumaric acid induces antioxidant capacity and defense responses of sweet cherry fruit to fungal pathogens. Postharvest Biology and Technology, 2020, 169, 111297.	6.0	42
23	Regulatory network of fruit ripening: current understanding and future challenges. New Phytologist, 2020, 228, 1219-1226.	7.3	75
24	Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. International Journal of Molecular Sciences, 2020, 21, 7881.	4.1	25
25	Molecular basis and regulation of pathogenicity and patulin biosynthesis in <i>Penicillium expansum</i> . Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3416-3438.	11.7	66
26	Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. Journal of Fungi (Basel, Switzerland), 2020, 6, 158.	3.5	79
27	The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms, 2020, 8, 227.	3.6	26
28	Ribonucleoside Diphosphate Reductase Plays an Important Role in Patulin Degradation by <i>Enterobacter cloacae</i> subsp. <i>dissolvens</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 5232-5240.	5.2	22
29	SIREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. Plant Physiology, 2020, 183, 717-732.	4.8	34
30	RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SIDML2 in tomato fruit ripening. Genome Biology, 2019, 20, 156.	8.8	174
31	Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions. International Journal of Molecular Sciences, 2019, 20, 2994.	4.1	90
32	Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 2019, 150, 158-165.	6.0	41
33	Dissection of patulin biosynthesis, spatial control and regulation mechanism in <i>Penicillium expansum</i> . Environmental Microbiology, 2019, 21, 1124-1139.	3.8	91
34	Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 2019, 151, 134-141.	6.0	83
35	The modes of action of epsilon-polylysine (ε-PL) against Botrytis cinerea in jujube fruit. Postharvest Biology and Technology, 2019, 147, 1-9.	6.0	56
36	Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit. Postharvest Biology and Technology, 2019, 149, 42-49.	6.0	51

#	Article	IF	CITATIONS
37	Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biology and Technology, 2018, 142, 46-54.	6.0	100
38	Variable-angle epifluorescence microscopy characterizes protein dynamics in the vicinity of plasma membrane in plant cells. BMC Plant Biology, 2018, 18, 43.	3.6	13
39	The pHâ€responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in <i>Penicillium expansum</i> . Environmental Microbiology, 2018, 20, 4063-4078.	3.8	81
40	The mode of action of remorin1 in regulating fruit ripening at transcriptional and postâ€ŧranscriptional levels. New Phytologist, 2018, 219, 1406-1420.	7.3	30
41	Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SIVPE3. Genome Biology, 2017, 18, 47.	8.8	51
42	LaeA regulation of secondary metabolism modulates virulence in <i>Penicillium expansum</i> and is mediated by sucrose. Molecular Plant Pathology, 2017, 18, 1150-1163.	4.2	93
43	iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. Journal of Proteomics, 2016, 146, 80-89.	2.4	23
44	The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Scientific Reports, 2016, 6, 33901.	3.3	53
45	A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening. Plant Physiology, 2016, 172, 1596-1611.	4.8	141
46	Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 2016, 122, 82-94.	6.0	305
47	Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit. Postharvest Biology and Technology, 2016, 111, 15-24.	6.0	63
48	Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum. International Journal of Food Microbiology, 2015, 206, 102-108.	4.7	83
49	Mechanism of H2O2-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis. International Journal of Food Microbiology, 2015, 193, 152-158.	4.7	32
50	Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in <i>Penicillium</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 635-647.	2.6	152
51	Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action. Current Microbiology, 2015, 71, 396-402.	2.2	55
52	Control of brown rot on jujube and peach fruits by trisodium phosphate. Postharvest Biology and Technology, 2015, 99, 93-98.	6.0	42
53	Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biology, 2014, 15, 548.	8.8	91
54	Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. Journal of Proteomics, 2014, 103, 47-56.	2.4	24

#	Article	IF	CITATIONS
55	Knocking Out <i>Bcsas1</i> in <i>Botrytis cinerea</i> Impacts Growth, Development, and Secretion of Extracellular Proteins, Which Decreases Virulence. Molecular Plant-Microbe Interactions, 2014, 27, 590-600.	2.6	81
56	Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 2013, 82, 593-602.	3.9	281
57	Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Scientia Horticulturae, 2012, 142, 38-43.	3.6	91

Effects of 1-methylcyclopropene(1-MCP) on ripening and resistance of jujube (Zizyphus jujuba cv.) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

58		8 5.2	93
59	Exploring Pathogenic Mechanisms of <i>Botrytis cinerea</i> Secretome under Different Ambient pH Based on Comparative Proteomic Analysis. Journal of Proteome Research, 2012, 11, 4249-4260.	3.7	92
60	Exogenous Calcium Improves Viability of Biocontrol Yeasts Under Heat Stress by Reducing ROS Accumulation and Oxidative Damage of Cellular Protein. Current Microbiology, 2012, 65, 122-127.	2.2	36
61	Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiology Ecology, 2012, 80, 578-590.	2.7	76
62	Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biology and Technology, 2012, 68, 16-21.	6.0	40
63	Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant Journal, 2012, 70, 243-255.	5.7	178
64	Hydrogen Peroxide Acts on Sensitive Mitochondrial Proteins to Induce Death of a Fungal Pathogen Revealed by Proteomic Analysis. PLoS ONE, 2011, 6, e21945.	2.5	94
65	Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiology Ecology, 2011, 76, 145-155.	2.7	72
66	Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biology and Technology, 2011, 62, 127-132.	6.0	92
67	Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. International Journal of Food Microbiology, 2011, 146, 76-83.	4.7	93
68	Oxidative Damage Involves in the Inhibitory Effect of Nitric Oxide on Spore Germination of Penicillium expansum. Current Microbiology, 2011, 62, 229-234.	2.2	46
69	Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 2010, 56, 50-55.	6.0	134
70	Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biological Control, 2010, 54, 316-321.	3.0	48
71	Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 2010, 138, 145-150.	4.7	119
72	Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 2010, 81, 70-75.	10.2	206

#	Article	IF	CITATIONS
73	Ambient pH Stress Inhibits Spore Germination of <i>Penicillium expansum</i> by Impairing Protein Synthesis and Folding: A Proteomic-Based Study. Journal of Proteome Research, 2010, 9, 298-307.	3.7	78
74	Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. Journal of the Science of Food and Agriculture, 2009, 89, 1838-1842.	3.5	50
75	Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics, 2009, 9, 4241-4253.	2.2	91
76	Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry, 2009, 114, 1028-1035.	8.2	152
77	Oxidative Damage of Mitochondrial Proteins Contributes to Fruit Senescence: A Redox Proteomics Analysis. Journal of Proteome Research, 2009, 8, 2449-2462.	3.7	152
78	Functions of defenseâ€related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics, 2008, 8, 4791-4807.	2.2	87
79	Effect of <i>Pichia membranaefaciens</i> combined with salicylic acid on controlling brown rot in peach fruit and the mechanisms involved. Journal of the Science of Food and Agriculture, 2008, 88, 1786-1793.	3.5	24
80	Effect of microbial biocontrol agents on alleviating oxidative damage of peach fruit subjected to fungal pathogen. International Journal of Food Microbiology, 2008, 126, 153-158.	4.7	78
81	Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 2008, 49, 379-385.	6.0	122
82	Proteome Approach To Characterize Proteins Induced by Antagonist Yeast and Salicylic Acid in Peach Fruit. Journal of Proteome Research, 2007, 6, 1677-1688.	3.7	177
83	Crucial Role of Antioxidant Proteins and Hydrolytic Enzymes in Pathogenicity of Penicillium expansum. Molecular and Cellular Proteomics, 2007, 6, 425-438.	3.8	119
84	Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 2007, 44, 300-306.	6.0	398
85	Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Applied Microbiology and Biotechnology, 2006, 70, 729-734.	3.6	149
86	Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Postharvest Biology and Technology, 2006, 39, 314-320.	6.0	110
87	Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 2005, 35, 253-262.	6.0	325
88	Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biology and Technology, 2005, 36, 215-223.	6.0	144
89	Integrated control of postharvest diseases of pear fruits using antagonistic yeasts in combination with ammonium molybdate. Journal of the Science of Food and Agriculture, 2005, 85, 2605-2610.	3.5	30
90	Synergistic Effects of Combining Biocontrol Agents with Silicon against Postharvest Diseases of Jujube Fruit. Journal of Food Protection, 2005, 68, 544-550.	1.7	52

#	Article	IF	CITATIONS
91	Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions. Postharvest Biology and Technology, 2004, 31, 51-58.	6.0	79
92	Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears. International Journal of Food Microbiology, 2004, 93, 297-304.	4.7	69
93	Biocontrol Efficacy of Antagonist Yeasts to Gray Mold and Blue Mold on Apples and Pears in Controlled Atmospheres. Plant Disease, 2002, 86, 848-853.	1.4	56
94	Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 2001, 21, 341-350.	6.0	111