Mainul Haque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ratio-Dependent Predator-Prey Models of Interacting Populations. Bulletin of Mathematical Biology, 2009, 71, 430-452.	0.9	119
2	The role of transmissible diseases in the Holling–Tanner predator–prey model. Theoretical Population Biology, 2006, 70, 273-288.	0.5	97
3	A detailed study of the Beddington–DeAngelis predator–prey model. Mathematical Biosciences, 2011, 234, 1-16.	0.9	89
4	An ecoepidemiological model with disease in predator: the ratio-dependent case. Mathematical Methods in the Applied Sciences, 2007, 30, 1791-1809.	1.2	84
5	A predator–prey model with disease in the prey species only. Mathematical Methods in the Applied Sciences, 2007, 30, 911-929.	1.2	81
6	A predator–prey model with disease in the predator species only. Nonlinear Analysis: Real World Applications, 2010, 11, 2224-2236.	0.9	78
7	Spatial patterns of a predator-prey model with cross diffusion. Nonlinear Dynamics, 2012, 69, 1631-1638.	2.7	75
8	An ecoepidemiological predatorâ€prey model with standard disease incidence. Mathematical Methods in the Applied Sciences, 2009, 32, 875-898.	1.2	61
9	Effect of delay in a Lotka–Volterra type predator–prey model with a transmissible disease in the predator species. Mathematical Biosciences, 2011, 234, 47-57.	0.9	49
10	Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology, 2012, 21, 439-455.	1.1	47
11	When a predator avoids infected prey: a model-based theoretical study. Mathematical Medicine and Biology, 2010, 27, 75-94.	0.8	43
12	Existence of complex patterns in the Beddington–DeAngelis predator–prey model. Mathematical Biosciences, 2012, 239, 179-190.	0.9	42
13	High PEEP in acute respiratory distress syndrome: quantitative evaluation between improved arterial oxygenation and decreased oxygen delivery. British Journal of Anaesthesia, 2016, 117, 650-658.	1.5	41
14	The spatial patterns through diffusion-driven instability in a predator–prey model. Applied Mathematical Modelling, 2012, 36, 1825-1841.	2.2	40
15	Persistence and global stability of Bazykin predator–prey model with Beddington–DeAngelis response function. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 189-209.	1.7	38
16	PULSE VACCINATION IN THE PERIODIC INFECTION RATE SIR EPIDEMIC MODEL. International Journal of Biomathematics, 2008, 01, 409-432.	1.5	32
17	A Leslie-Gower Holling-type II ecoepidemic model. Journal of Applied Mathematics and Computing, 2011, 35, 263-280.	1.2	32
18	Evaluation of lung recruitment maneuvers in acute respiratory distress syndrome using computer simulation. Critical Care, 2015, 19, 8.	2.5	32

MAINUL HAQUE

#	Article	IF	CITATIONS
19	Hemodynamic effects of lung recruitment maneuvers in acute respiratory distress syndrome. BMC Pulmonary Medicine, 2017, 17, 34.	0.8	32
20	Global stability and persistence in LG–Holling type II diseased predator ecosystems. Journal of Biological Physics, 2011, 37, 91-106.	0.7	31
21	Bifurcation analysis in a predator–prey system with a functional response increasing in both predator and prey densities. Nonlinear Dynamics, 2018, 94, 1639-1656.	2.7	31
22	Effect of a functional response-dependent prey refuge in a predator–prey model. Ecological Complexity, 2014, 20, 248-256.	1.4	29
23	Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy. Nonlinear Analysis: Real World Applications, 2010, 11, 432-445.	0.9	28
24	Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator. Computers in Biology and Medicine, 2017, 85, 63-74.	3.9	28
25	Study of a tri-trophic prey-dependent food chain model of interacting populations. Mathematical Biosciences, 2013, 246, 55-71.	0.9	26
26	Dynamics of a predator–prey model with disease in the predator. Mathematical Methods in the Applied Sciences, 2014, 37, 2429-2450.	1.2	26
27	Ratio-dependent predator–prey model of interacting population with delay effect. Nonlinear Dynamics, 2012, 69, 817-836.	2.7	25
28	An impulsive predator–prey model with communicable disease in the prey species only. Nonlinear Analysis: Real World Applications, 2009, 10, 3098-3111.	0.9	22
29	Role of transmissible disease in an infected prey-dependent predator–Âprey system. Mathematical and Computer Modelling of Dynamical Systems, 2007, 13, 163-178.	1.4	20
30	Comparing functional responses in predator-infected eco-epidemics models. BioSystems, 2013, 114, 98-117.	0.9	19
31	Can computer simulators accurately represent the pathophysiology of individual COPD patients?. Intensive Care Medicine Experimental, 2014, 2, 23.	0.9	19
32	Patterns formations in a diffusive ratio-dependent predator–prey model of interacting populations. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 374-383.	1.2	18
33	Analysis of a Leslie–Gower-type prey–predator model with periodic impulsive perturbations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3412-3423.	1.7	17
34	Dynamics of adding variable prey refuge and an Allee effect to a predator–prey model. AEJ - Alexandria Engineering Journal, 2022, 61, 4175-4188.	3.4	16
35	EFFECT OF PARASITIC INFECTION IN THE LESLIE–GOWER PREDATOR–PREY MODEL. Journal of Biological Systems, 2008, 16, 425-444.	0.5	12
36	The Stress-Response Network in Animals: Proposals to Develop a Predictive Mathematical Model. The Open Toxicology Journal, 2009, 2, 71-76.	1.0	12

Mainul Haque

#	Article	IF	CITATIONS
37	GLOBAL STABILITY ANALYSIS OF AN ECO-EPIDEMIOLOGICAL MODEL OF THE SALTON SEA. Journal of Biological Systems, 2006, 14, 373-385.	0.5	11
38	Management of primary blast lung injury: a comparison of airway pressure release versus low tidal volume ventilation. Intensive Care Medicine Experimental, 2020, 8, 26.	0.9	11
39	Development of an integrated model of cardiovascular and pulmonary physiology for the evaluation of mechanical ventilation strategies. , 2015, 2015, 5319-22.		8
40	Modelling the dynamics of Pine Wilt Disease with asymptomatic carriers and optimal control. Scientific Reports, 2020, 10, 11412.	1.6	6
41	Primary blast lung injury simulator: a new computerised model. Journal of the Royal Army Medical Corps, 2019, 165, 45-50.	0.8	5
42	Creating virtual ARDS patients. , 2016, 2016, 2729-2732.		4
43	The SIS Epidemic Model with Impulsive Effects. , 2007, , .		2
44	A Ratio-Dependent Predator-Prey Model with Logistic Growth for the Predator Population. , 2008, , .		2
45	Mathematical modelling of a microRNA-regulated gene network in <i>Caenorhabditis elegans</i> . Mathematical Biosciences and Engineering, 2020, 17, 2881-2904.	1.0	1
46	Trends in Tourism Accommodation Investment in Australia. Advances in Hospitality and Leisure, 0, , 215-238.	0.2	0