Boris Bastian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060483/publications.pdf Version: 2024-02-01

		6613	4645
201	30,849	79	170
papers	citations	h-index	g-index
225 all docs	225 docs citations	225 times ranked	27710 citing authors

#	Article	IF	CITATIONS
1	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	28.9	2,562
2	Distinct Sets of Genetic Alterations in Melanoma. New England Journal of Medicine, 2005, 353, 2135-2147.	27.0	2,501
3	Somatic Activation of KIT in Distinct Subtypes of Melanoma. Journal of Clinical Oncology, 2006, 24, 4340-4346.	1.6	1,481
4	Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 2009, 457, 599-602.	27.8	1,433
5	Mutations in <i>GNA11</i> in Uveal Melanoma. New England Journal of Medicine, 2010, 363, 2191-2199.	27.0	1,312
6	CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Computational Biology, 2016, 12, e1004873.	3.2	1,260
7	The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 2015, 373, 1926-1936.	27.0	824
8	KIT as a Therapeutic Target in Metastatic Melanoma. JAMA - Journal of the American Medical Association, 2011, 305, 2327.	7.4	755
9	Germline mutations in BAP1 predispose to melanocytic tumors. Nature Genetics, 2011, 43, 1018-1021.	21.4	662
10	Determinants of BRAF Mutations in Primary Melanomas. Journal of the National Cancer Institute, 2003, 95, 1878-1890.	6.3	604
11	From melanocytes to melanomas. Nature Reviews Cancer, 2016, 16, 345-358.	28.4	596
12	Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell, 2013, 23, 811-825.	16.8	553
13	Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nature Communications, 2014, 5, 3116.	12.8	521
14	Classifying Melanocytic Tumors Based on DNA Copy Number Changes. American Journal of Pathology, 2003, 163, 1765-1770.	3.8	448
15	Mutations and Copy Number Increase of HRAS in Spitz Nevi with Distinctive Histopathological Features. American Journal of Pathology, 2000, 157, 967-972.	3.8	446
16	Fluorescence In Situ Hybridization (FISH) as an Ancillary Diagnostic Tool in the Diagnosis of Melanoma. American Journal of Surgical Pathology, 2009, 33, 1146-1156.	3.7	441
17	The Prevalence and Prognostic Value of BRAF Mutation in Thyroid Cancer. Annals of Surgery, 2007, 246, 466-471.	4.2	407
18	The Molecular Pathology of Melanoma: An Integrated Taxonomy of Melanocytic Neoplasia. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 239-271.	22.4	392

#	Article	IF	CITATIONS
19	Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP. Cancer Cell, 2014, 25, 822-830.	16.8	391
20	Improving Melanoma Classification by Integrating Genetic and Morphologic Features. PLoS Medicine, 2008, 5, e120.	8.4	322
21	MC1R Germline Variants Confer Risk for BRAF-Mutant Melanoma. Science, 2006, 313, 521-522.	12.6	318
22	Molecular Cytogenetic Analysis of Spitz Nevi Shows Clear Differences to Melanoma. Journal of Investigative Dermatology, 1999, 113, 1065-1069.	0.7	316
23	Congenital Melanocytic Nevi Frequently Harbor NRAS Mutations but no BRAF Mutations. Journal of Investigative Dermatology, 2007, 127, 179-182.	0.7	302
24	Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology, 2006, 8, 1053-1063.	10.3	296
25	β-Catenin induces immortalization of melanocytes by suppressing <i>p16^{INK4a}</i> expression and cooperates with N-Ras in melanoma development. Genes and Development, 2007, 21, 2923-2935.	5.9	283
26	In Melanoma, RAS Mutations Are Accompanied by Switching Signaling from BRAF to CRAF and Disrupted Cyclic AMP Signaling. Cancer Research, 2006, 66, 9483-9491.	0.9	271
27	A Distinct Subset of Atypical Spitz Tumors is Characterized by BRAF Mutation and Loss of BAP1 Expression. American Journal of Surgical Pathology, 2012, 36, 818-830.	3.7	264
28	The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Archives of Pathology and Laboratory Medicine, 2020, 144, 500-522.	2.5	239
29	Genetic Changes in Neoplasms Arising in Congenital Melanocytic Nevi. American Journal of Pathology, 2002, 161, 1163-1169.	3.8	228
30	The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell and Melanoma Research, 2011, 24, 879-897.	3.3	225
31	Mutations in the promoter of the telomerase gene <i>TERT</i> contribute to tumorigenesis by a two-step mechanism. Science, 2017, 357, 1416-1420.	12.6	224
32	Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nature Genetics, 2015, 47, 1194-1199.	21.4	221
33	Pervasive chromosomal instability and karyotype order in tumour evolution. Nature, 2020, 587, 126-132.	27.8	221
34	Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Research, 2002, 62, 3200-6.	0.9	217
35	Doseâ€dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell and Melanoma Research, 2008, 21, 492-493.	3.3	213
36	Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nature Communications, 2019, 10, 3163.	12.8	205

#	Article	IF	CITATIONS
37	Sunitinib Therapy for Melanoma Patients with <i>KIT</i> Mutations. Clinical Cancer Research, 2012, 18, 1457-1463.	7.0	197
38	Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool. Dermatologic Therapy, 2006, 19, 40-49.	1.7	186
39	<i>BRAF</i> mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell and Melanoma Research, 2011, 24, 345-351.	3.3	180
40	Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene, 2014, 33, 4724-4734.	5.9	174
41	Dual Inactivation of RB and p53 Pathways in RAS-Induced Melanomas. Molecular and Cellular Biology, 2001, 21, 2144-2153.	2.3	161
42	Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. Cancer Cell, 2018, 34, 45-55.e4.	16.8	157
43	Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology, 2017, 19, now254.	1.2	155
44	The genetic evolution of metastatic uveal melanoma. Nature Genetics, 2019, 51, 1123-1130.	21.4	148
45	Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proceedings of the United States of America, 2015, 112, 10995-11000.	7.1	146
46	Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma. British Journal of Cancer, 2009, 101, 813-815.	6.4	139
47	Activating MET kinase rearrangements in melanoma and Spitz tumours. Nature Communications, 2015, 6, 7174.	12.8	139
48	Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1455-1460.	7.1	134
49	Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial. Annals of Oncology, 2017, 28, 1380-1387.	1.2	134
50	Frequent mutations in the MITF pathway in melanoma. Pigment Cell and Melanoma Research, 2009, 22, 435-444.	3.3	132
51	Genetic and morphologic features for melanoma classification. Pigment Cell and Melanoma Research, 2010, 23, 763-770.	3.3	130
52	The genetic landscape of ganglioglioma. Acta Neuropathologica Communications, 2018, 6, 47.	5.2	130
53	A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Human Molecular Genetics, 2002, 11, 3221-3229.	2.9	129
54	Clinical, Histopathologic, and Genomic Features of Spitz Tumors With ALK Fusions. American Journal of Surgical Pathology, 2015, 39, 581-591.	3.7	129

#	Article	IF	CITATIONS
55	Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clinical Cancer Research, 2015, 21, 2289-2296.	7.0	128
56	<scp>NTRK3</scp> kinase fusions in Spitz tumours. Journal of Pathology, 2016, 240, 282-290.	4.5	128
57	Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene, 2003, 22, 3081-3086.	5.9	123
58	Human tumor genomics and zebrafish modeling identify <i>SPRED1</i> loss as a driver of mucosal melanoma. Science, 2018, 362, 1055-1060.	12.6	123
59	Targeted Genomic Profiling of Acral Melanoma. Journal of the National Cancer Institute, 2019, 111, 1068-1077.	6.3	118
60	Persistent (Recurrent) Spitz Nevi. American Journal of Surgical Pathology, 2002, 26, 654-661.	3.7	117
61	Recurrent <scp>BRAF</scp> kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell and Melanoma Research, 2013, 26, 845-851.	3.3	114
62	RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell, 2017, 31, 685-696.e6.	16.8	113
63	Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell, 2018, 34, 56-68.e9.	16.8	113
64	Loss-of-Function Fibroblast Growth Factor Receptor-2 Mutations in Melanoma. Molecular Cancer Research, 2009, 7, 41-54.	3.4	112
65	Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma. Pigment Cell and Melanoma Research, 2014, 27, 37-47.	3.3	112
66	Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi. Nature Communications, 2017, 8, 644.	12.8	107
67	Benefit of elective lymph node dissection in subgroups of melanoma patients. Results of a multicenter study of 3616 patients. Cancer, 1993, 72, 741-749.	4.1	99
68	Mechanisms of Cell-Cycle Arrest in Spitz Nevi with Constitutive Activation of the MAP-Kinase Pathway. American Journal of Pathology, 2004, 164, 1783-1787.	3.8	99
69	KIT as a Therapeutic Target in Melanoma. Journal of Investigative Dermatology, 2010, 130, 20-27.	0.7	99
70	Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nature Communications, 2019, 10, 353.	12.8	99
71	Interleukin-10 production in malignant melanoma: Preferential detection of IL-10-secreting tumor cells in metastatic lesions. , 1996, 66, 607-610.		96
72	Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Modern Pathology, 2017, 30, 246-254.	5.5	95

#	Article	IF	CITATIONS
73	Melanoma in childhood: An EORTC-MCG multicenter study on the clinico-pathological aspects. , 1996, 68, 317-324.		94
74	Frequent p16-Independent Inactivation of p14ARF in Human Melanoma. Journal of the National Cancer Institute, 2008, 100, 784-795.	6.3	94
75	Mutation-driven drug development in melanoma. Current Opinion in Oncology, 2010, 22, 178-183.	2.4	94
76	Genomic Analysis of Blue Nevi and Related Dermal Melanocytic Proliferations. American Journal of Surgical Pathology, 2005, 29, 1214-1220.	3.7	92
77	Clonal BRAF Mutations in Melanocytic Nevi and Initiating Role of BRAF in Melanocytic Neoplasia. Journal of the National Cancer Institute, 2013, 105, 917-919.	6.3	92
78	Distribution and Significance of Occult Intraepidermal Tumor Cells Surrounding Primary Melanoma. Journal of Investigative Dermatology, 2008, 128, 2024-2030.	0.7	91
79	Chromosomal aberrations in angioimmunoblastic Tâ€cell lymphoma and peripheral Tâ€cell lymphoma unspecified: A matrixâ€based CGH approach. Genes Chromosomes and Cancer, 2007, 46, 37-44.	2.8	89
80	The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathology, 2019, 29, 85-96.	4.1	88
81	Use of Fluorescence In situ Hybridization (FISH) to Distinguish Intranodal Nevus From Metastatic Melanoma. American Journal of Surgical Pathology, 2010, 34, 231-237.	3.7	86
82	Detection of elevated levels of IL-4, IL-6, and IL-10 in blister fluid of bullous pemphigoid. Archives of Dermatological Research, 1996, 288, 353-357.	1.9	85
83	Biology of advanced uveal melanoma and next steps for clinical therapeutics. Pigment Cell and Melanoma Research, 2015, 28, 135-147.	3.3	81
84	The genomic landscapes of individual melanocytes from human skin. Nature, 2020, 586, 600-605.	27.8	79
85	MC1R Variants Increase Risk of Melanomas Harboring BRAF Mutations. Journal of Investigative Dermatology, 2008, 128, 2485-2490.	0.7	78
86	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
87	Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Modern Pathology, 2018, 31, 660-673.	5.5	76
88	Well-differentiated papillary mesothelioma of the peritoneum is genetically defined by mutually exclusive mutations in TRAF7 and CDC42. Modern Pathology, 2019, 32, 88-99.	5.5	76
89	Ambiguous Melanocytic Tumors With Loss of 3p21. American Journal of Surgical Pathology, 2014, 38, 1088-1095.	3.7	75
90	SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis. Cancer Research, 2013, 73, 5709-5718.	0.9	70

#	Article	IF	CITATIONS
91	Fluorescence In Situ Hybridization as an Ancillary Tool in the Diagnosis of Ambiguous Melanocytic Neoplasms. American Journal of Surgical Pathology, 2014, 38, 824-831.	3.7	70
92	Clinical activity of the <scp>MEK</scp> inhibitor trametinib in metastatic melanoma containing <i><scp>BRAF</scp></i> kinase fusion. Pigment Cell and Melanoma Research, 2015, 28, 607-610.	3.3	70
93	Consumption of the Epidermis. American Journal of Surgical Pathology, 2004, 28, 1621-1625.	3.7	69
94	Spitz melanoma is a distinct subset of spitzoid melanoma. Modern Pathology, 2020, 33, 1122-1134.	5.5	67
95	Co-occurring Alterations in the RAS–MAPK Pathway Limit Response to MET Inhibitor Treatment in MET Exon 14 Skipping Mutation-Positive Lung Cancer. Clinical Cancer Research, 2020, 26, 439-449.	7.0	64
96	Loss of the p53/p63 Regulated Desmosomal Protein Perp Promotes Tumorigenesis. PLoS Genetics, 2010, 6, e1001168.	3.5	63
97	Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Reports, 2019, 29, 573-588.e7.	6.4	62
98	Assessment of Copy Number Status of Chromosomes 6 and 11 by FISH Provides Independent Prognostic Information in Primary Melanoma. American Journal of Surgical Pathology, 2011, 35, 1146-1150.	3.7	60
99	GNAQ and GNA11 mutations in melanocytomas of the central nervous system. Acta Neuropathologica, 2012, 123, 457-459.	7.7	60
100	PI3-Kinase Subunits Are Infrequent Somatic Targets in Melanoma. Journal of Investigative Dermatology, 2006, 126, 1660-1663.	0.7	59
101	Molecular Analysis of a Case of Nevus of Ota Showing Progressive Evolution to Melanoma With Intermediate Stages Resembling Cellular Blue Nevus. American Journal of Dermatopathology, 2010, 32, 301-305.	0.6	59
102	A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nature Communications, 2015, 6, 8093.	12.8	58
103	The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathologica, 2019, 137, 139-150.	7.7	57
104	A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nature Communications, 2018, 9, 810.	12.8	56
105	Filigree-like Rete Ridges, Lobulated Nests, Rosette-like Structures, and Exaggerated Maturation Characterize Spitz Tumors With NTRK1 Fusion. American Journal of Surgical Pathology, 2019, 43, 737-746.	3.7	55
106	The Presence of Polyomavirus in Non-Melanoma Skin Cancer in Organ Transplant Recipients Is Rare. Journal of Investigative Dermatology, 2009, 129, 250-252.	0.7	54
107	Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity. Modern Pathology, 2016, 29, 1012-1027.	5.5	54
108	Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathologica, 2018, 135, 485-488.	7.7	54

#	Article	IF	CITATIONS
109	Erythropoietin receptor contributes to melanoma cell survival in vivo. Oncogene, 2012, 31, 1649-1660.	5.9	46
110	Next-Generation Sequencing of Uveal Melanoma for Detection of Genetic Alterations Predicting Metastasis. Translational Vision Science and Technology, 2019, 8, 18.	2.2	44
111	Elevated levels of interleukin-8 in blister fluid of bullous pemphigoidcompared with suction blisters of healthy control subjects. Journal of the American Academy of Dermatology, 1996, 34, 310-312.	1.2	42
112	A Mouse Model Uncovers LKB1 as an UVB-Induced DNA Damage Sensor Mediating CDKN1A (p21WAF1/CIP1) Degradation. PLoS Genetics, 2014, 10, e1004721.	3.5	40
113	Next-Generation Sequencing of Retinoblastoma Identifies Pathogenic Alterations beyond RB1 Inactivation That Correlate with Aggressive Histopathologic Features. Ophthalmology, 2020, 127, 804-813.	5.2	39
114	Functional characterization of uveal melanoma oncogenes. Oncogene, 2021, 40, 806-820.	5.9	39
115	Melanocytic tumors with MAP3K8 fusions: report of 33 cases with morphological-genetic correlations. Modern Pathology, 2020, 33, 846-857.	5.5	38
116	Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile. Acta Neuropathologica, 2018, 136, 339-343.	7.7	37
117	Molecular Cytogenetics as a Diagnostic Tool for Typing Melanocytic Tumors. Recent Results in Cancer Research, 2002, 160, 92-99.	1.8	36
118	Germline Variation Controls the Architecture of Somatic Alterations in Tumors. PLoS Genetics, 2010, 6, e1001136.	3.5	35
119	Atypical junctional melanocytic proliferations in benign lichenoid keratosis. Human Pathology, 2003, 34, 706-709.	2.0	33
120	Activating NRF1-BRAF and ATG7-RAF1 fusions in anaplastic pleomorphic xanthoastrocytoma without BRAF p.V600E mutation. Acta Neuropathologica, 2016, 132, 757-760.	7.7	32
121	MicroRNA Ratios Distinguish Melanomas fromÂNevi. Journal of Investigative Dermatology, 2020, 140, 164-173.e7.	0.7	32
122	The combination of axitinib followed by paclitaxel/carboplatin yields extended survival in advanced BRAF wild-type melanoma: results of a clinical/correlative prospective phase II clinical trial. British Journal of Cancer, 2015, 112, 1326-1331.	6.4	30
123	Hypothesis: A Role for Telomere Crisis in Spontaneous Regression of Melanoma. Archives of Dermatology, 2003, 139, 667-8.	1.4	30
124	Elevated serum levels of soluble CD30 are associated with atopic dermatitis, but not with respiratory atopic disorders and allergic contact dermatitis. British Journal of Dermatology, 1997, 137, 185-187.	1.5	29
125	MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13845-13850.	7.1	29
126	In melanoma, <scp>H</scp> ippo signaling is affected by copy number alterations and <scp>YAP</scp> 1 overexpression impairs patient survival. Pigment Cell and Melanoma Research, 2014, 27, 671-673.	3.3	28

#	Article	IF	CITATIONS
127	Novel computational method for predicting polytherapy switching strategies to overcome tumor heterogeneity and evolution. Scientific Reports, 2017, 7, 44206.	3.3	28
128	Primary Cutaneous Natural Killer/ T-Cell Lymphoma. Archives of Dermatology, 1998, 134, 109-111.	1.4	27
129	Two cases of unusual acral melanocytic tumors: Illustration of molecular cytogenetics as a diagnostic tool. Human Pathology, 2003, 34, 89-92.	2.0	26
130	Molecular genetics of melanocytic neoplasia: practical applications for diagnosis. Pathology, 2004, 36, 458-461.	0.6	26
131	Somatic Mutation of Epidermal Growth Factor Receptor in a Small Subset of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2010, 130, 901-903.	0.7	26
132	Nodular lesions arising in a large congenital melanocytic naevus in a newborn with eruptive disseminated Spitz naevi. British Journal of Dermatology, 2011, 165, 1138-1142.	1.5	26
133	The Genetic Evolution of Melanoma. New England Journal of Medicine, 2016, 374, 993-996.	27.0	26
134	Localization of annexins in normal and diseased human skin. Journal of Dermatological Science, 1993, 6, 225-234.	1.9	25
135	Genomeâ€wide associations studies for melanoma and nevi. Pigment Cell and Melanoma Research, 2009, 22, 527-528.	3.3	25
136	Metastatic Melanoma With Striking Adenocarcinomatous Differentiation Illustrating Phenotypic Plasticity in Melanoma. American Journal of Surgical Pathology, 2011, 35, 1413-1418.	3.7	25
137	Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nature Communications, 2014, 5, 5442.	12.8	25
138	Melanoma pathology: new approaches and classification*. British Journal of Dermatology, 2021, 185, 282-293.	1.5	25
139	Eosinophilic Globules in Spitz Nevi: No Evidence for Apoptosis. American Journal of Dermatopathology, 1998, 20, 551-554.	0.6	25
140	Metastatic Melanoma in Association With a Giant Congenital Melanocytic Nevus in an Adult. American Journal of Dermatopathology, 2015, 37, 487-494.	0.6	22
141	An unconventional deep penetrating melanocytic nevus with microscopic involvement of regional lymph nodes. Journal of Cutaneous Pathology, 2012, 39, 25-28.	1.3	20
142	Inactivating <i>MUTYH</i> germline mutations in pediatric patients with high-grade midline gliomas. Neuro-Oncology, 2016, 18, 752-753.	1.2	20
143	Fusion partners of NTRK3 affect subcellular localization of the fusion kinase and cytomorphology of melanocytes. Modern Pathology, 2021, 34, 735-747.	5.5	20
144	Chromosomal gains and losses in primary cutaneous melanomas detected by compartive genomic hybridization. Journal of Dermatological Science, 1998, 16, S142.	1.9	19

#	Article	IF	CITATIONS
145	The Tumor Suppressor BAP1 Regulates the Hippo Pathway in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2020, 80, 1656-1668.	0.9	18
146	Autoantibodies to annexins: a diagnostic marker for cutaneous disorders?. Journal of Dermatological Science, 1994, 8, 194-202.	1.9	17
147	Constitutive activation of the phosphatidyl inositol 3 kinase signalling pathway in acral lentiginous melanoma. British Journal of Dermatology, 2007, 158, 071115063928004-???.	1.5	17
148	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	7.7	17
149	Adult Rhabdomyoma of the Lip. American Journal of Dermatopathology, 1998, 20, 61-64.	0.6	17
150	Absence of PDGFRA Mutations in Primary Melanoma. Journal of Investigative Dermatology, 2008, 128, 488-489.	0.7	16
151	Targeting Activated KIT Signaling for Melanoma Therapy. Journal of Clinical Oncology, 2013, 31, 3288-3290.	1.6	16
152	Chromosomal Copy Number Analysis in Melanoma Diagnostics. Methods in Molecular Biology, 2014, 1102, 199-226.	0.9	16
153	An isolated Merkel cell carcinoma metastasis at a distant cutaneous site presenting as a second â€ [~] primary' tumor. Journal of Cutaneous Pathology, 2011, 38, no-no.	1.3	15
154	Primary Neuroendocrine Carcinoma of the Skin with an Unusual Follicular Lymphocytic Infiltrate of the Dermis. American Journal of Dermatopathology, 1996, 18, 625-628.	0.6	15
155	Genomic Approaches to Skin Cancer Diagnosis. Archives of Dermatology, 2001, 137, 1507-11.	1.4	14
156	Beyond BRAF in Melanoma. Current Topics in Microbiology and Immunology, 2010, 355, 99-117.	1.1	14
157	Alleleâ€specific imbalance mapping identifies <i>HDAC9</i> as a candidate gene for cutaneous squamous cell carcinoma. International Journal of Cancer, 2014, 134, 244-248.	5.1	14
158	The Longer Your Telomeres, the Larger Your Nevus?. American Journal of Dermatopathology, 2003, 25, 83-84.	0.6	13
159	Establishment of a novel melanoma cell line SMYM-PRGP showing cytogenetic and biological characteristics of the radial growth phase of acral melanomas. Cancer Science, 2007, 98, 958-963.	3.9	13
160	Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted, arising during teenage years often lack TERT promoter mutation that is typical of their adult counterparts. Acta Neuropathologica Communications, 2018, 6, 95.	5.2	13
161	Eruptive Spitz nevus, a striking example of benign metastasis. Scientific Reports, 2020, 10, 16216.	3.3	13
162	Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Medicine, 2022, 14, .	8.2	13

#	Article	IF	CITATIONS
163	Genomic Analysis of Melanocytic Neoplasia. Advances in Dermatology, 2005, 21, 81-99.	2.0	12
164	Elevated Cutaneous Smad Activation Associates with Enhanced Skin Tumor Susceptibility in Organ Transplant Recipients. Clinical Cancer Research, 2009, 15, 5101-5107.	7.0	12
165	Molecular-Microscopical Correlation in Dermatopathology. Journal of Cutaneous Pathology, 2011, 38, 324-326.	1.3	12
166	A lymphohistiocytic variant of anaplastic large cell lymphoma with demonstration of the t(2;5)(p23;q35) chromosome translocation. British Journal of Haematology, 1998, 100, 187-190.	2.5	10
167	Congenital uveal melanoma?. Survey of Ophthalmology, 2016, 61, 59-64.	4.0	10
168	Phospholipase A2 is secreted by murine keratinocytes after stimulation with IL-11± and TNF-1±. Archives of Dermatological Research, 1996, 288, 147-152.	1.9	9
169	The tumor suppressor <scp>BAP</scp> 1 cooperates with <scp>BRAFV</scp> 600E to promote tumor formation in cutaneous melanoma. Pigment Cell and Melanoma Research, 2019, 32, 269-279.	3.3	9
170	Multiple desmoplastic Spitz nevi with BRAF fusions in a patient with ring chromosome 7 syndrome. Pigment Cell and Melanoma Research, 2021, 34, 987-993.	3.3	9
171	Evaluation of Crizotinib Treatment in a Patient With Unresectable <i>GOPC-ROS1</i> Fusion Agminated Spitz Nevi. JAMA Dermatology, 2021, 157, 836-841.	4.1	9
172	Lack of somatic alterations of <i>MC1R</i> in primary melanoma. Pigment Cell and Melanoma Research, 2008, 21, 579-582.	3.3	8
173	Melanoma BRAF Fusions—Letter. Clinical Cancer Research, 2014, 20, 6631-6631.	7.0	8
174	The longer your telomeres, the larger your nevus?. American Journal of Dermatopathology, 2003, 25, 83-4.	0.6	7
175	Multiple Merkel cell carcinomas: Late metastasis or multiple primary tumors? A molecular study. JAAD Case Reports, 2017, 3, 131-134.	0.8	6
176	PTCH1 Mutation in a Patient With Metastatic Undifferentiated Carcinoma With Clear Cell Change. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 778-783.	4.9	6
177	Progress in the delivery of siRNA therapeutics: Potential in uveal melanoma. Drugs of the Future, 2011, 36, 229.	0.1	5
178	Expanding the genetic spectrum of pigmentation. Pigment Cell and Melanoma Research, 2008, 21, 507-508.	3.3	4
179	Germline variation of the melanocortinâ€1 receptor does not explain shared risk for melanoma and thyroid cancer. Experimental Dermatology, 2009, 18, 548-552.	2.9	4
180	Association of Indoor Tanning Exposure With Age at Melanoma Diagnosis and BRAF V600E Mutations. Journal of the National Cancer Institute, 2019, 111, 1228-1231.	6.3	4

#	Article	IF	CITATIONS
181	Raising the bar for melanoma cancer gene discovery. Pigment Cell and Melanoma Research, 2012, 25, 708-709.	3.3	3
182	Acute myeloid leukemia with t(14;21) involving RUNX1 and SYNE2: A novel favorable-risk translocation?. Cancer Genetics, 2017, 216-217, 74-78.	0.4	3
183	Melanoma to Vitiligo: The Melanocyte in Biology & Medicine–Joint Montagna Symposium on the Biology of Skin/PanAmerican Society for Pigment Cell Research Annual Meeting. Journal of Investigative Dermatology, 2020, 140, 269-274.	0.7	2
184	Iris and Ciliary Body Melanocytomas Are Defined by Solitary GNAQ Mutation Without Additional Oncogenic Alterations. Ophthalmology, 2022, 129, 1429-1439.	5.2	2
185	<title>Interactive system for registering adjacent tissue sections</title> . , 1998, 3260, 154.		1
186	Comment on "Cutaneous Melanoma in Childhood and Adolescence Shows Frequent Loss of INK4A and Gain of KIT― Journal of Investigative Dermatology, 2010, 130, 2330-2331.	0.7	1
187	Filling the gaps in the genomic catalogue of melanoma subtypes. Pigment Cell and Melanoma Research, 2017, 30, 508-509.	3.3	1
188	769P APOBEC signatures and high tumour mutational burden as predictors of clinical outcomes and response to therapy in patients with urothelial carcinoma. Annals of Oncology, 2020, 31, S593.	1.2	1
189	Phospholipase A 2 is secreted by murine keratinocytes after stimulation with IL-1α and TNF-α. Archives of Dermatological Research, 1996, 288, 147-152.	1.9	1
190	Melanocytic nevi. , 2012, , 1150-1220.		1
191	Absence of Somatic Mutations of NEMO in Keratoacanthoma. Journal of Investigative Dermatology, 2009, 129, 2518-2520.	0.7	0
192	Genetic alterations in uveal melanoma. Expert Review of Ophthalmology, 2011, 6, 129-132.	0.6	0
193	GNA11 (guanine nucleotide binding protein (G protein), alpha 11 (Gq class)). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	0
194	GNAQ (guanine nucleotide binding protein (G protein), q polypeptide). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2012, , .	0.1	0
195	Ocular Melanoma. , 2019, , 453-468.		0
196	Spitz Tumors. , 2019, , 395-410.		0
197	Ewing sarcoma in a child with neurofibromatosis type 1. Journal of Physical Education and Sports Management, 2019, 5, a004580.	1.2	0
198	Molecular Pathology of Cutaneous Melanoma and Nonmelanoma Skin Cancer. , 2013, , 269-306.		0

#	Article	IF	CITATIONS
199	Spitz Tumors. , 2018, , 1-16.		0
200	Ocular Melanoma. , 2018, , 1-16.		0
201	Genetic Progression From Melanocyte to Malignant Melanoma. , 2006, , 197-209.		0