Daniel S Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060392/publications.pdf

Version: 2024-02-01

		185998	182168
59	2,935	28	51
papers	citations	h-index	g-index
59	59	59	5129
all docs	docs citations	times ranked	citing authors
			3

#	Article	IF	Citations
1	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	3.4	336
2	Does stakeholder involvement really benefit biodiversity conservation?. Biological Conservation, 2013, 158, 359-370.	1.9	207
3	Global trade networks determine the distribution of invasive nonâ€native species. Global Ecology and Biogeography, 2017, 26, 907-917.	2.7	177
4	Biological Flora of the British Isles: <i>Ambrosia artemisiifolia</i> . Journal of Ecology, 2015, 103, 1069-1098.	1.9	164
5	Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 2013, 36, 649-656.	2.1	129
6	Human-Mediated Dispersal and the Rewiring of Spatial Networks. Trends in Ecology and Evolution, 2018, 33, 958-970.	4.2	110
7	Modelling the introduction and spread of nonâ€native species: international trade and climate change drive ragweed invasion. Global Change Biology, 2016, 22, 3067-3079.	4.2	101
8	A Process-Based Approach to Predicting the Effect of Climate Change on the Distribution of an Invasive Allergenic Plant in Europe. PLoS ONE, 2014, 9, e88156.	1.1	99
9	An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology, 2013, 182-183, 43-53.	1.9	93
10	Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology, 2014, 20, 192-202.	4.2	89
11	The future of the uplands. Land Use Policy, 2009, 26, S204-S216.	2.5	80
12	Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA Journal, 2019, 17, e05665.	0.9	79
13	Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services. Ecology and Society, 2013, 18, .	1.0	70
14	Grazing alters insect visitation networks and plant mating systems. Functional Ecology, 2014, 28, 178-189.	1.7	63
15	Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biological Invasions, 2017, 19, 1825-1837.	1.2	61
16	Weak climatic associations among British plant distributions. Global Ecology and Biogeography, 2010, 19, 831-841.	2.7	59
17	Impacts of resource extraction on forest structure and diversity in Bardia National Park, Nepal. Forest Ecology and Management, 2010, 259, 641-649.	1.4	57
18	Improving species distribution models for invasive nonâ€native species with biologically informed pseudoâ€absence selection. Journal of Biogeography, 2019, 46, 1029-1040.	1.4	53

#	Article	IF	CITATIONS
19	Modelling population redistribution in a leaf beetle: an evaluation of alternative dispersal functions. Journal of Animal Ecology, 2007, 76, 36-44.	1.3	50
20	A prioritization process for invasive alien plant species incorporating the requirements of <scp>EU</scp> Regulation no. 1143/2014. EPPO Bulletin, 2016, 46, 603-617.	0.6	48
21	Mechanistic species distribution modeling reveals a niche shift during invasion. Ecology, 2017, 98, 1671-1680.	1.5	45
22	Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. Functional Ecology, 2017, 31, 1285-1293.	1.7	45
23	Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions, 2012, 18, 603-614.	1.9	43
24	Can carbon offsetting pay for upland ecological restoration?. Science of the Total Environment, 2009, 408, 26-36.	3.9	42
25	Random Forest characterization of upland vegetation and management burning from aerial imagery. Journal of Biogeography, 2010, 37, 37-46.	1.4	40
26	The prioritisation of a short list of alien plants for risk analysis within the framework of the Regulation (EU) No. 1143/2014. NeoBiota, 0, 35, 87-118.	1.0	39
27	Community versus single-species distribution models for British plants. Journal of Biogeography, 2011, 38, 1524-1535.	1.4	35
28	Making waves. Bridging theory and practice towards multiple stressor management in freshwater ecosystems. Water Research, 2021, 196, 116981.	5.3	32
29	Estimating the epidemiology of emerging <i>Xylella fastidiosa</i> outbreaks in olives. Plant Pathology, 2020, 69, 1403-1413.	1.2	31
30	Modelling the coupled dynamics of moorland management and upland vegetation. Journal of Applied Ecology, 2009, 46, 278-288.	1.9	28
31	Synchrony of butterfly populations across species' geographic ranges. Oikos, 2010, 119, 1690-1696.	1.2	27
32	Invasion of freshwater ecosystems is promoted by network connectivity to hotspots of human activity. Global Ecology and Biogeography, 2020, 29, 645-655.	2.7	27
33	Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing. Global Change Biology, 2013, 19, 3463-3471.	4.2	25
34	Measuring functional connectivity using longâ€ŧerm monitoring data. Methods in Ecology and Evolution, 2011, 2, 527-533.	2.2	24
35	Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. Forest Ecology and Management, 2021, 488, 119036.	1.4	24
36	Evolutionary traitâ€based approaches for predicting future global impacts of plant pathogens in the genus <i>Phytophthora</i> . Journal of Applied Ecology, 2021, 58, 718-730.	1.9	23

#	Article	IF	Citations
37	Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landscape Ecology, 2020, 35, 1891-1906.	1.9	22
38	Modelling Acacia saligna invasion in a large Mediterranean island using PAB factors: A tool for implementing the European legislation on invasive species. Ecological Indicators, 2020, 116, 106516.	2.6	22
39	Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota, 0, 59, 77-97.	1.0	22
40	Complex interactions between the wind and ballistic seed dispersal in <i>Impatiens glandulifera</i> (Royle). Journal of Ecology, 2012, 100, 874-883.	1.9	21
41	Landscape and fine-scale movements of a leaf beetle: the importance of boundary behaviour. Oecologia, 2007, 154, 55-64.	0.9	20
42	The utility of distribution data in predicting phenology. Methods in Ecology and Evolution, 2013, 4, 1024-1032.	2.2	19
43	PHYTO-THREATS: Addressing Threats to UK Forests and Woodlands from Phytophthora; Identifying Risks of Spread in Trade and Methods for Mitigation. Forests, 2021, 12, 1617.	0.9	18
44	Trait filtering during exotic plant invasion of tropical rainforest remnants along a disturbance gradient. Functional Ecology, 2020, 34, 2584-2597.	1.7	17
45	Dispersal capacity shapes responses of river island invertebrate assemblages to vegetation structure, island area, and flooding. Insect Conservation and Diversity, 2017, 10, 341-353.	1.4	14
46	Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory. EFSA Supporting Publications, 2015, 12, 795E.	0.3	13
47	Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations. Biological Conservation, 2020, 248, 108631.	1.9	13
48	Biogeographical drivers of ragweed pollen concentrations in Europe. Theoretical and Applied Climatology, 2018, 133, 277-295.	1.3	12
49	Eco-Epidemiological Uncertainties of Emerging Plant Diseases: The Challenge of Predicting Xylella fastidiosa Dynamics in Novel Environments. Phytopathology, 2020, 110, 1740-1750.	1.1	12
50	Unbiased inference of plant flowering phenology from biological recording data. Biological Journal of the Linnean Society, 2015, 115, 543-554.	0.7	11
51	Monographs on invasive plants in Europe N° 5: <i>Ambrosia trifida</i> L Botany Letters, 2021, 168, 167-190.	0.7	9
52	Interactions between harvesting, noise and territoriality in a model of red grouse population cycles. Journal of Animal Ecology, 2009, 78, 476-484.	1.3	8
53	Process from pattern in the distribution of an endangered leaf beetle. Ecography, 2009, 32, 259-268.	2.1	8
54	Assessing multiple stressor effects to inform climate change management responses in three European catchments. Inland Waters, 2022, 12, 94-106.	1.1	7

#	Article	IF	CITATIONS
55	Fewer sites but better data? Optimising the representativeness and statistical power of a national monitoring network. Ecological Indicators, 2020, 114, 106321.	2.6	6
56	Native and non-native aquatic plants of South America: comparing and integrating GBIF records with literature data. Management of Biological Invasions, 2017, 8, 443-454.	0.5	3
57	Modelling land use dynamics in socio-ecological systems: A case study in the UK uplands. Advances in Ecological Research, 2019, , 125-152.	1.4	2
58	Habitat loss, predation pressure and episodic heat-shocks interact to impact arthropods and photosynthetic functioning of microecosystems. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210032.	1.2	1
59	Adaptive Land-Use Management in Dynamic Ecological System. Lecture Notes in Computer Science, 2009, , 152-161.	1.0	0