Ester Aso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060261/publications.pdf

Version: 2024-02-01

145106 182931 3,061 61 33 54 h-index citations g-index papers 66 66 66 5362 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Remote local photoactivation of morphine produces analgesia without opioidâ€related adverse effects. British Journal of Pharmacology, 2023, 180, 958-974.	2.7	15
2	Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain. Current Neuropharmacology, 2022, 20, 1035-1045.	1.4	7
3	Activating cannabinoid receptor 2 preserves axonal health through GSK-3 \hat{l}^2 /NRF2 axis in adrenoleukodystrophy. Acta Neuropathologica, 2022, 144, 241-258.	3.9	2
4	Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. Neuropsychopharmacology, 2021, 46, 665-672.	2.8	24
5	Synchrotron X-ray Fluorescence and FTIR Signatures for Amyloid Fibrillary and Nonfibrillary Plaques. ACS Chemical Neuroscience, 2021, 12, 1961-1971.	1.7	11
6	In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer's disease transgenic mice using synchrotron-based infrared imaging. Scientific Reports, 2021, 11, 18368.	1.6	9
7	Cannabidiol-Enriched Extract Reduced the Cognitive Impairment but Not the Epileptic Seizures in a Lafora Disease Animal Model. Cannabis and Cannabinoid Research, 2020, 5, 150-163.	1.5	13
8	Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. Journal of Medicinal Chemistry, 2020, 63, 9360-9390.	2.9	25
9	Elevated levels of Secreted-Frizzled-Related-Protein 1 contribute to Alzheimer's disease pathogenesis. Nature Neuroscience, 2019, 22, 1258-1268.	7.1	48
10	Synthesis, In Vitro Profiling, and In Vivo Efficacy Studies of a New Family of Multitarget Anti-Alzheimer Compounds. Proceedings (mdpi), 2019, 22, .	0.2	0
11	Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 198-209.	1.7	75
12	Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts î"9-Tetrahydrocannabinol-Induced Cognitive Impairment. Molecular Neurobiology, 2019, 56, 5382-5391.	1.9	47
13	PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: in vitro and in vivo studies. International Journal of Nanomedicine, 2018, Volume 13, 5577-5590.	3.3	52
14	Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model. Biochemical Pharmacology, 2018, 157, 210-216.	2.0	32
15	Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochemical Pharmacology, 2018, 157, 67-84.	2.0	75
16	Inflammatory Gene Expression in Whole Peripheral Blood at Early Stages of Sporadic Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 546.	1.1	26
17	The cannabis paradox: when age matters. Nature Medicine, 2017, 23, 661-662.	15.2	6
18	Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration. Aging, 2017, 9, 823-851.	1.4	50

#	Article	IF	CITATIONS
19	CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 243.	1.4	92
20	Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer's Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine. Journal of Alzheimer's Disease, 2016, 51, 489-500.	1.2	56
21	Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model. Journal of Alzheimer's Disease, 2016, 54, 903-912.	1.2	49
22	An early dysregulation of FAK and MEK/ERK signaling pathways precedes the \hat{l}^2 -amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease. Journal of Proteomics, 2016, 148, 149-158.	1.2	56
23	FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau. Journal of Alzheimer's Disease, 2016, 54, 471-475.	1.2	3
24	Fibrinogen-Derived γ377–395 Peptide Improves Cognitive Performance and Reduces Amyloid-β Deposition, without Altering Inflammation, in AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2015, 47, 403-412.	1.2	6
25	Memory Improvement in the AÎ ² PP/PS1 Mouse Model of Familial Alzheimer's Disease Induced by Carbamylated-Erythropoietin is Accompanied by Modulation of Synaptic Genes. Journal of Alzheimer's Disease, 2015, 45, 407-421.	1.2	30
26	Complex Inflammation mRNA-Related Response in ALS Is Region Dependent. Neural Plasticity, 2015, 2015, 1-11.	1.0	25
27	Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications With Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau. Journal of Neuropathology and Experimental Neurology, 2015, 74, 975-999.	0.9	55
28	Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. Journal of Medicinal Chemistry, 2015, 58, 6018-6032.	2.9	58
29	Neuroinflammatory Signals in Alzheimer Disease and APP/PS1 Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 319-344.	0.9	105
30	Cannabinoids for treatment of Alzheimer \tilde{A} ¢ \hat{a} , $\neg \hat{a}$, φ s disease: moving toward the clinic. Frontiers in Pharmacology, 2014, 5, 37.	1.6	166
31	Promoter hypermethylation of the phosphatase DUSP22 mediates PKAâ€dependent TAU phosphorylation and CREB activation in Alzheimer's disease. Hippocampus, 2014, 24, 363-368.	0.9	98
32	Attenuation by baclofen of nicotine rewarding properties and nicotine withdrawal manifestations. Psychopharmacology, 2014, 231, 3031-3040.	1.5	23
33	Cannabis-Based Medicine Reduces Multiple Pathological Processes in AÎ 2 PP/PS1 Mice. Journal of Alzheimer's Disease, 2014, 43, 977-991.	1.2	110
34	Baclofen and 2-hydroxysaclofen modify acute hypolocomotive and antinociceptive effects of nicotine. European Journal of Pharmacology, 2014, 738, 200-205.	1.7	8
35	Genetically Modified Mice as Tools to Understand the Neurobiological Substrates of Depression. Current Pharmaceutical Design, 2014, 20, 3718-3737.	0.9	2
36	Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. Neuroscience, 2013, 248, 369-382.	1.1	68

#	Article	IF	CITATIONS
37	CB2 Cannabinoid Receptor Agonist Ameliorates Alzheimer-Like Phenotype in AÎ ² PP/PS1 Mice. Journal of Alzheimer's Disease, 2013, 35, 847-858.	1.2	167
38	It may be possible to delay the onset of neurodegenerative diseases with an immunosuppressive drug (rapamycin). Expert Opinion on Biological Therapy, 2013, 13, 1215-1219.	1.4	14
39	Effect of Poly(propylene imine) Glycodendrimers on β-Amyloid Aggregation in Vitro and in APP/PS1 Transgenic Mice, as a Model of Brain Amyloid Deposition and Alzheimer's Disease. Biomacromolecules, 2013, 14, 3570-3580.	2.6	64
40	DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain, 2013, 136, 3018-3027.	3.7	129
41	Triheptanoin Supplementation to Ketogenic Diet Curbs Cognitive Impairment in APP/PS1 Mice Used as a Model of Familial Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 290-297.	0.7	44
42	Cerebellar Amyloid- \hat{l}^2 Plaques: Disturbed Cortical Circuitry in A \hat{l}^2 PP/PS1 Transgenic Mice as a Model of Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 31, 285-300.	1.2	23
43	Evidence for Premature Lipid Raft Aging in APP/PS1 Double-Transgenic Mice, a Model of Familial Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 868-881.	0.9	69
44	Amyloid Generation and Dysfunctional Immunoproteasome Activation with Disease Progression in Animal Model of Familial Alzheimer's Disease. Brain Pathology, 2012, 22, 636-653.	2.1	95
45	CB1 Agonist ACEA Protects Neurons and Reduces the Cognitive Impairment of AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2012, 30, 439-459.	1.2	96
46	Synthesis of triheptanoin and formulation as a solid diet for rodents. European Journal of Lipid Science and Technology, 2012, 114, 889-895.	1.0	5
47	Neuronal Hemoglobin is Reduced in Alzheimer's Disease, Argyrophilic Grain Disease, Parkinson's Disease, and Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2011, 23, 537-550.	1.2	86
48	Altered expression of neuronal tryptophan hydroxylase-2 mRNA in the dorsal and median raphe nuclei of three genetically modified mouse models relevant to depression and anxiety. Journal of Chemical Neuroanatomy, 2011, 41, 227-233.	1.0	13
49	Genes differentially expressed in CB1 knockout mice: Involvement in the depressive-like phenotype. European Neuropsychopharmacology, 2011, 21, 11-22.	0.3	40
50	Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. European Neuropsychopharmacology, 2011, 21, 23-32.	0.3	55
51	Shared changes in gene expression in frontal cortex of four genetically modified mouse models of depression. European Neuropsychopharmacology, 2011, 21, 3-10.	0.3	12
52	Essential role of the N-terminal region of TFII-I in viability and behavior. BMC Medical Genetics, 2010, 11, 61.	2.1	35
53	Lack of CB ₁ receptor activity impairs serotonergic negative feedback. Journal of Neurochemistry, 2009, 109, 935-944.	2.1	85
54	P.2.b.018 Genes differentially expressed in CB1 knockout mice: involvement in the depressive-like phenotype. European Neuropsychopharmacology, 2009, 19, S401-S402.	0.3	0

#	Article	IF	Citations
55	BDNF impairment in the hippocampus is related to enhanced despair behavior in CB ₁ knockout mice. Journal of Neurochemistry, 2008, 105, 565-572.	2.1	175
56	CB ₁ knockout mice display impaired functionality of 5â€HT _{1A} and 5â€HT _{2A/C} receptors. Journal of Neurochemistry, 2007, 103, 2111-2120.	2.1	73
57	Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology, 2006, 184, 504-513.	1.5	82
58	B83 DEPRESSIVE-LIKE BEHAVIOURAL AND BIOCHEMICAL RESPONSES IN CB1 KNOCKOUT MICE. Behavioural Pharmacology, 2005, 16, S92.	0.8	0
59	Involvement of the opioid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology, 2005, 181, 260-269.	1.5	55
60	Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. European Journal of Neuroscience, 2004, 20, 2737-2748.	1.2	106
61	Potential Therapeutic Strategies to Prevent the Progression of Alzheimer to Disease States. , 0, , .		2