
## **Uwe Sonnewald**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059963/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element–specific proteins reveal<br>differentiation of the endomembrane system. Proceedings of the National Academy of Sciences of the<br>United States of America, 2022, 119, e2112755119.      | 7.1  | 7         |
| 2  | Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics, 2022, 23, 144.                                                                    | 2.8  | 8         |
| 3  | The good and the bad of preprint servers in plant physiology. Journal of Plant Physiology, 2022, 271, 153661.                                                                                                                                                     | 3.5  | 0         |
| 4  | Understanding resource and energy distribution in plants for a better future. Journal of Plant<br>Physiology, 2022, 272, 153694.                                                                                                                                  | 3.5  | 0         |
| 5  | Crop genetic diversity uncovers metabolites, elements, and gene networks predicted to be associated with high plant biomass yields in maize. , 2022, 1, .                                                                                                         |      | 2         |
| 6  | Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. Journal of Experimental Botany, 2021, 72, 3688-3703.                                                                                                          | 4.8  | 21        |
| 7  | X-Ray CT Phenotyping Reveals Bi-Phasic Growth Phases of Potato Tubers Exposed to Combined Abiotic<br>Stress. Frontiers in Plant Science, 2021, 12, 613108.                                                                                                        | 3.6  | 12        |
| 8  | Plant biotechnology for sustainable agriculture and food safety. Journal of Plant Physiology, 2021, 261, 153416.                                                                                                                                                  | 3.5  | 7         |
| 9  | Tuber and Tuberous Root Development. Annual Review of Plant Biology, 2021, 72, 551-580.                                                                                                                                                                           | 18.7 | 77        |
| 10 | Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. Frontiers in Plant Science, 2021, 12, 715767.                                                                                                       | 3.6  | 17        |
| 11 | Assimilate highway to sink organs – Physiological consequences of SP6A overexpression in transgenic potato (Solanum tuberosum L.). Journal of Plant Physiology, 2021, 266, 153530.                                                                                | 3.5  | 5         |
| 12 | Metabolomics should be deployed in the identification and characterization of geneâ€edited crops.<br>Plant Journal, 2020, 102, 897-902.                                                                                                                           | 5.7  | 30        |
| 13 | Transcriptional and Metabolic Profiling of Potato Plants Expressing a Plastid-Targeted Electron<br>Shuttle Reveal Modulation of Genes Associated to Drought Tolerance by Chloroplast Redox Poise.<br>International Journal of Molecular Sciences, 2020, 21, 7199. | 4.1  | 12        |
| 14 | Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Scientific Reports, 2020, 10, 21020.                                                                                                                 | 3.3  | 29        |
| 15 | Vernalization Alters Sink and Source Identities and Reverses Phloem Translocation from Taproots to<br>Shoots in Sugar Beet. Plant Cell, 2020, 32, 3206-3223.                                                                                                      | 6.6  | 30        |
| 16 | Tagging and catching: rapid isolation and efficient labeling of organelles using the covalent<br>Spy-System in planta. Plant Methods, 2020, 16, 122.                                                                                                              | 4.3  | 5         |
| 17 | The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering. Plant Journal, 2020, 103, 1655-1665.                                                                                                                 | 5.7  | 33        |
| 18 | Synchronization of developmental, molecular and metabolic aspects of source–sink interactions.<br>Nature Plants, 2020, 6, 55-66.                                                                                                                                  | 9.3  | 107       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metabolic profiles of six African cultivars of cassava ( <i>Manihot esculenta</i> Crantz) highlight<br>bottlenecks of root yield. Plant Journal, 2020, 102, 1202-1219.                                                               | 5.7  | 27        |
| 20 | Future-Proofing Potato for Drought and Heat Tolerance by Overexpression of Hexokinase and SP6A.<br>Frontiers in Plant Science, 2020, 11, 614534.                                                                                     | 3.6  | 25        |
| 21 | Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors. Nature Communications, 2020, 11, 879.                                                                                    | 12.8 | 24        |
| 22 | Deciphering the genetic basis for vitamin E accumulation in leaves and grains of different barley accessions. Scientific Reports, 2019, 9, 9470.                                                                                     | 3.3  | 7         |
| 23 | Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta. Journal of Experimental Botany, 2019, 70, 5559-5573.                                                          | 4.8  | 39        |
| 24 | Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink<br>Development in Potato. Current Biology, 2019, 29, 1614-1624.e3.                                                                         | 3.9  | 58        |
| 25 | Proteomics of diphtheria toxoid vaccines reveals multiple proteins that are immunogenic and may contribute to protection of humans against Corynebacterium diphtheriae. Vaccine, 2019, 37, 3061-3070.                                | 3.8  | 25        |
| 26 | Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato.<br>Current Biology, 2019, 29, 1178-1186.e6.                                                                                       | 3.9  | 137       |
| 27 | Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. Plant Physiology and Biochemistry, 2019, 139, 411-418.                                                                                                    | 5.8  | 19        |
| 28 | Cassava Metabolomics and Starch Quality. Current Protocols in Plant Biology, 2019, 4, e20102.                                                                                                                                        | 2.8  | 16        |
| 29 | Next-generation strategies for understanding and influencing source–sink relations in crop plants.<br>Current Opinion in Plant Biology, 2018, 43, 63-70.                                                                             | 7.1  | 119       |
| 30 | Plant synthetic biology: One answer to global challenges. Journal of Integrative Plant Biology, 2018, 60, 1124-1126.                                                                                                                 | 8.5  | 2         |
| 31 | Single-Component Biohybrid Light-Emitting Diodes Using a White-Emitting Fused Protein. ACS Omega, 2018, 3, 15829-15836.                                                                                                              | 3.5  | 21        |
| 32 | Deciphering source and sink responses of potato plants ( <i><scp>Solanum tuberosum</scp> L</i> .) to elevated temperatures. Plant, Cell and Environment, 2018, 41, 2600-2616.                                                        | 5.7  | 51        |
| 33 | Light-Emitting Diodes: Micropatterned Down-Converting Coating for White Bio-Hybrid Light-Emitting<br>Diodes (Adv. Funct. Mater. 1/2017). Advanced Functional Materials, 2017, 27, .                                                  | 14.9 | 0         |
| 34 | Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics, 2017, 18, 37.                                                                                                                        | 2.8  | 98        |
| 35 | Differences and commonalities of plant responses to single and combined stresses. Plant Journal, 2017, 90, 839-855.                                                                                                                  | 5.7  | 206       |
| 36 | Metabolite profiling of barley flag leaves under drought and combined heat and drought stress<br>reveals metabolic QTLs for metabolites associated with antioxidant defense. Journal of Experimental<br>Botany, 2017, 68, 1697-1713. | 4.8  | 109       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Comparative proteomic profiling of the choline transporterâ€like1 ( <scp>CHER</scp> 1) mutant provides<br>insights into plasmodesmata composition of fully developed <i>Arabidopsis thaliana</i> leaves. Plant<br>Journal, 2017, 92, 696-709. | 5.7  | 45        |
| 38 | Choline transporterâ€like1 ( <scp>CHER</scp> 1) is crucial for plasmodesmata maturation in<br><i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 394-406.                                                                                 | 5.7  | 58        |
| 39 | Micropatterned Downâ€Converting Coating for White Bioâ€Hybrid Lightâ€Emitting Diodes. Advanced<br>Functional Materials, 2017, 27, 1601792.                                                                                                    | 14.9 | 33        |
| 40 | The stress granule component G3BP is a novel interaction partner for the nuclear shuttle proteins of the nanovirus pea necrotic yellow dwarf virus and geminivirus abutilon mosaic virus. Virus Research, 2017, 227, 6-14.                    | 2.2  | 52        |
| 41 | Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. Journal of Experimental Botany, 2017, 68, 2317-2331.                                                                                  | 4.8  | 62        |
| 42 | Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction<br>of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria. Frontiers in<br>Plant Science, 2017, 8, 1158.          | 3.6  | 47        |
| 43 | Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response. Frontiers in Plant Science, 2017, 8, 1378.                                                       | 3.6  | 83        |
| 44 | Hop/Sti1 – A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. Frontiers in Plant Science, 2017, 8, 1754.                                                                                        | 3.6  | 25        |
| 45 | Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus. Journal of General Virology, 2017, 98, 2569-2581.                                                                            | 2.9  | 36        |
| 46 | Probing the potential of CnaB-type domains for the design of tag/catcher systems. PLoS ONE, 2017, 12, e0179740.                                                                                                                               | 2.5  | 21        |
| 47 | Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS ONE, 2017, 12, e0181444.                                             | 2.5  | 25        |
| 48 | Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous<br>Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope. Viruses, 2016, 8, 73.                                                    | 3.3  | 5         |
| 49 | Human promyelocytic leukemia protein is targeted to distinct subnuclear domains in plant nuclei and colocalizes with nucleolar constituents in a <scp>SUMO</scp> â€dependent manner. FEBS Open Bio, 2016, 6, 1141-1154.                       | 2.3  | 2         |
| 50 | Easy and versatile coating approach for long-living white hybrid light-emitting diodes. Materials<br>Horizons, 2016, 3, 340-347.                                                                                                              | 12.2 | 35        |
| 51 | Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1. Plant Physiology, 2016, 172, 389-404.                                                                                                                       | 4.8  | 70        |
| 52 | Demand for food as driver for plant sink development. Journal of Plant Physiology, 2016, 203, 110-115.                                                                                                                                        | 3.5  | 25        |
| 53 | Interaction of Movement Proteins with Host Factors, Mechanism of Viral Host Cell Manipulation and Influence of MPs on Plant Growth and Development. , 2016, , 1-37.                                                                           |      | 1         |
| 54 | Bioinspired Hybrid White Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 5493-5498.                                                                                                                                                     | 21.0 | 72        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Engineering of Metabolic Pathways by Artificial Enzyme Channels. Frontiers in Bioengineering and<br>Biotechnology, 2015, 3, 168.                                                                                | 4.1 | 67        |
| 56 | How Potato Plants Take the Heat?. Procedia Environmental Sciences, 2015, 29, 97.                                                                                                                                | 1.4 | 10        |
| 57 | Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of<br>oxidative stress and symplastic obstruction by callose. Journal of Experimental Botany, 2015, 66,<br>957-971. | 4.8 | 32        |
| 58 | An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant, Cell and Environment, 2015, 38, 1591-1612.                                                 | 5.7 | 53        |
| 59 | Subtle Regulation of Potato Acid Invertase Activity by a Protein Complex of Invertase, Invertase<br>Inhibitor, and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE. Plant Physiology, 2015, 168,<br>1807-1819.    | 4.8 | 47        |
| 60 | ß-amylase1 mutant <i>Arabidopsis&lt;∕i&gt;plants show improved drought tolerance due to reduced starch<br/>breakdown in guard cells. Journal of Experimental Botany, 2015, 66, 6059-6067.</i>                   | 4.8 | 59        |
| 61 | Signaling events in plants: Stress factors in combination change the picture. Environmental and Experimental Botany, 2015, 114, 4-14.                                                                           | 4.2 | 151       |
| 62 | Strasburger â^' Lehrbuch der Pflanzenwissenschaften. , 2014, , .                                                                                                                                                |     | 52        |
| 63 | Regulation of potato tuber sprouting. Planta, 2014, 239, 27-38.                                                                                                                                                 | 3.2 | 170       |
| 64 | Grundlagen der Biosynthese und des Abbaus von Proteinen. , 2014, , 217-226.                                                                                                                                     |     | 0         |
| 65 | Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics, 2013, 14, 442.                                                              | 2.8 | 100       |
| 66 | A primer to â€~bio-objects': new challenges at the interface of science, technology and society. Systems<br>and Synthetic Biology, 2013, 7, 1-6.                                                                | 1.0 | 9         |
| 67 | Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts<br>in Signaling Networks. Plant Physiology, 2013, 162, 1849-1866.                                         | 4.8 | 446       |
| 68 | How Do Stomata Sense Reductions in Atmospheric Relative Humidity?. Molecular Plant, 2013, 6, 1703-1706.                                                                                                         | 8.3 | 28        |
| 69 | Starches—from current models to genetic engineering. Plant Biotechnology Journal, 2013, 11, 223-232.                                                                                                            | 8.3 | 81        |
| 70 | The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis.<br>Current Biology, 2013, 23, 53-57.                                                                           | 3.9 | 415       |
| 71 | A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant, Cell and Environment, 2013, 36, 1311-1327.                                                                                  | 5.7 | 64        |
| 72 | In silico selection of <i>Arabidopsis thaliana</i> ecotypes with enhanced stress tolerance. Plant<br>Signaling and Behavior, 2013, 8, e26364.                                                                   | 2.4 | 5         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Ustilago maydis Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient<br>Induction of Filamentous Growth. Eukaryotic Cell, 2012, 11, 368-380.                                                             | 3.4 | 38        |
| 74 | Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon<br>Metabolism But Also Control of Phosphate Homeostasis  Â. Plant Physiology, 2012, 160, 1384-1406.                                      | 4.8 | 170       |
| 75 | The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination. Journal of Experimental Botany, 2012, 63, 1919-1936.                                                    | 4.8 | 32        |
| 76 | Regulation of Cell Wall-Bound Invertase in Pepper Leaves by Xanthomonas campestris pv. vesicatoria<br>Type Three Effectors. PLoS ONE, 2012, 7, e51763.                                                                            | 2.5 | 54        |
| 77 | The Arabidopsis <i>DCP2</i> gene is required for proper mRNA turnover and prevents transgene silencing in Arabidopsis. Plant Journal, 2012, 72, 368-377.                                                                          | 5.7 | 53        |
| 78 | Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants.<br>Plant Biotechnology Journal, 2012, 10, 1088-1098.                                                                             | 8.3 | 65        |
| 79 | OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology, 2012, 12, 245.                                                                          | 3.6 | 47        |
| 80 | The Mode of Sucrose Degradation in Potato Tubers Determines the Fate of Assimilate Utilization.<br>Frontiers in Plant Science, 2012, 3, 23.                                                                                       | 3.6 | 29        |
| 81 | Purification, crystallization and preliminary X-ray diffraction analysis of the Hsp40 protein CPIP1<br>from <i>Nicotiana tabacum</i> . Acta Crystallographica Section F: Structural Biology Communications,<br>2012, 68, 236-239. | 0.7 | 1         |
| 82 | Der Beitrag der Grünen Gentechnik. Biologie in Unserer Zeit, 2012, 42, 112-119.                                                                                                                                                   | 0.2 | 0         |
| 83 | Hypoallergenic profilin – a new way to identify allergenic determinants. FEBS Journal, 2012, 279,<br>2727-2736.                                                                                                                   | 4.7 | 2         |
| 84 | Xyloglucan endotransglucosylase and cell wall extensibility. Journal of Plant Physiology, 2011, 168, 196-203.                                                                                                                     | 3.5 | 66        |
| 85 | PD Trafficking of Potato Leaf Roll Virus Movement Protein in Arabidopsis Depends on Site-specific<br>Protein Phosphorylation. Frontiers in Plant Science, 2011, 2, 18.                                                            | 3.6 | 24        |
| 86 | Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Frontiers in Plant Science, 2011, 2, 39.                                                   | 3.6 | 25        |
| 87 | Silencing ?1,2-xylosyltransferase in Transgenic Tomato Fruits Reveals xylose as Constitutive Component of Ige-Binding Epitopes. Frontiers in Plant Science, 2011, 2, 42.                                                          | 3.6 | 19        |
| 88 | Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses. Frontiers in Plant Science, 2011, 2, 82.                                                                       | 3.6 | 7         |
| 89 | Sweets – The Missing Sugar Efflux Carriers. Frontiers in Plant Science, 2011, 2, 7.                                                                                                                                               | 3.6 | 11        |
| 90 | Identification of virulence genes in the corn pathogen <i>Colletotrichum<br/>graminicola</i> by <i>Agrobacterium tumefaciens</i> â€mediated transformation. Molecular Plant<br>Pathology, 2011, 12, 43-55.                        | 4.2 | 49        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The second face of a known player: Arabidopsis silencing suppressor AtXRN4 acts organâ€specifically.<br>New Phytologist, 2011, 189, 484-493.                                                                                                        | 7.3  | 13        |
| 92  | AtHsp70â€15â€deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant Journal, 2011, 66, 983-995.                                                         | 5.7  | 101       |
| 93  | Response to the criticism by Taube et al. in ESE 23:1, 2011, on the booklet "Green Genetic Engineering"<br>published by the German Research Foundation (DFG). Environmental Sciences Europe, 2011, 23, .                                            | 11.0 | 3         |
| 94  | Systems Analysis of a Maize Leaf Developmental Gradient Redefines the Current C4 Model and Provides<br>Candidates for Regulation Â. Plant Cell, 2011, 23, 4208-4220.                                                                                | 6.6  | 165       |
| 95  | Reactivation of Meristem Activity and Sprout Growth in Potato Tubers Require Both Cytokinin and<br>Gibberellin   Â. Plant Physiology, 2011, 155, 776-796.                                                                                           | 4.8  | 143       |
| 96  | Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters<br>Responsiveness to Hormones during Sprouting Á Â. Plant Physiology, 2011, 156, 1754-1771.                                                      | 4.8  | 138       |
| 97  | Deoxyuridine triphosphatase expression defines the transition from dormant to sprouting potato tuber buds. Molecular Breeding, 2010, 26, 525-531.                                                                                                   | 2.1  | 17        |
| 98  | Progress in physiological research and its relevance for agriculture and ecology. Current Opinion in Plant Biology, 2010, 13, 227-232.                                                                                                              | 7.1  | 3         |
| 99  | Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics, 2010, 11, 93.                                                            | 2.8  | 63        |
| 100 | Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB Journal, 2010, 24, 4939-4947.                                                                              | 0.5  | 2         |
| 101 | Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences<br>but show cultivar-specific variances. Proceedings of the National Academy of Sciences of the United<br>States of America, 2010, 107, 6198-6203. | 7.1  | 114       |
| 102 | Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB Journal, 2010, 24, 4939-4947.                                                                              | 0.5  | 22        |
| 103 | HSP70 and Its Cochaperone CPIP Promote Potyvirus Infection in <i>Nicotiana benthamiana</i> by Regulating Viral Coat Protein Functions. Plant Cell, 2010, 22, 523-535.                                                                               | 6.6  | 125       |
| 104 | Overexpression of a Cell Wall Enzyme Reduces Xyloglucan Depolymerization and Softening of Transgenic Tomato Fruits. Journal of Agricultural and Food Chemistry, 2010, 58, 5708-5713.                                                                | 5.2  | 77        |
| 105 | <i>Ustilago maydis</i> Infection Strongly Alters Organic Nitrogen Allocation in Maize and Stimulates<br>Productivity of Systemic Source Leaves A Â. Plant Physiology, 2009, 152, 293-308.                                                           | 4.8  | 98        |
| 106 | Phytohormones in plant root- <i>Piriformospora indica</i> mutualism. Plant Signaling and Behavior, 2009, 4, 669-671.                                                                                                                                | 2.4  | 44        |
| 107 | Tocopherol deficiency in transgenic tobacco ( <i>Nicotiana tabacum</i> L.) plants leads to accelerated senescence. Plant, Cell and Environment, 2009, 32, 144-157.                                                                                  | 5.7  | 57        |
| 108 | Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with <i>Piriformospora indica</i> . Plant Journal, 2009, 59, 461-474.                                               | 5.7  | 183       |

| #   | Article                                                                                                                                                                                                                                                                          | IF              | CITATIONS          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 109 | Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only<br>minor effects on respiration in leaves of transgenic tobacco plants. New Phytologist, 2009, 184,<br>607-618.                                                             | 7.3             | 46                 |
| 110 | Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional and Integrative Genomics, 2008, 8, 329-340.                                                                                                   | 3.5             | 114                |
| 111 | Largeâ€scale phenotyping of transgenic tobacco plants ( <i>Nicotiana tabacum</i> ) to identify essential<br>leaf functions. Plant Biotechnology Journal, 2008, 6, 246-263.                                                                                                       | 8.3             | 24                 |
| 112 | Loss of cytosolic fructoseâ€1,6â€bisphosphatase limits photosynthetic sucrose synthesis and causes<br>severe growth retardations in rice ( <i>Oryza sativa</i> ). Plant, Cell and Environment, 2008, 31,<br>1851-1863.                                                           | 5.7             | 73                 |
| 113 | Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph<br><i>Ustilago maydis</i> . Plant Journal, 2008, 56, 181-195.                                                                                                                  | 5.7             | 328                |
| 114 | Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology, 2008, 165, 19-28.                                                                                                                                       | 3.5             | 80                 |
| 115 | Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and<br>Inhibition of Photosynthesis during Compatible Interaction between Tomato and <i>Xanthomonas<br/>campestris</i> pv <i>vesicatoria</i> A Â. Plant Physiology, 2008, 148, 1523-1536. | 4.8             | 158                |
| 116 | The Silver Lining of a Viral Agent: Increasing Seed Yield and Harvest Index in Arabidopsis by Ectopic<br>Expression of the Potato Leaf Roll Virus Movement Protein. Plant Physiology, 2007, 145, 905-918.                                                                        | 4.8             | 29                 |
| 117 | Calystegines in potatoes with genetically engineered carbohydrate metabolism. Journal of Experimental Botany, 2007, 58, 1603-1615.                                                                                                                                               | 4.8             | 17                 |
| 118 | Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by<br>Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity. Plant<br>Physiology, 2007, 143, 1827-1840.                                    | 4.8             | 67                 |
| 119 | Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by<br>Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity. Plant<br>Physiology, 2007, 143, 1827-1840.                                    | 4.8             | 65                 |
| 120 | Capsid Protein-Mediated Recruitment of Host DnaJ-Like Proteins Is Required for <i>Potato Virus Y</i> Infection in Tobacco Plants. Journal of Virology, 2007, 81, 11870-11880.                                                                                                    | 3.4             | 123                |
| 121 | Specific Roles of α- and γ-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant<br>Physiology, 2007, 143, 1720-1738.                                                                                                                                              | 4.8             | 236                |
| 122 | Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate<br>dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany,<br>2007, 58, 2053-2067.                                                                   | 4.8             | 70                 |
| 123 | RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum) Tj ETQq1 1<br>on total soluble carbohydrate accumulation. Plant, Cell and Environment, 2007, 31, 071115091544001-???.                                                          | 0.784314<br>5.7 | 1 rgBT /Over<br>32 |
| 124 | Intracellular Trafficking of <i>Potato Leafroll Virus</i> Movement Protein in Transgenic<br><i>Arabidopsis</i> . Traffic, 2007, 8, 1205-1214.                                                                                                                                    | 2.7             | 75                 |
| 125 | Characterisation of the ATP-dependent phosphofructokinase gene family fromArabidopsis thaliana.<br>FEBS Letters, 2007, 581, 2401-2410.                                                                                                                                           | 2.8             | 78                 |
| 126 | The complex network of non-cellulosic carbohydrate metabolism. Current Opinion in Plant Biology, 2007, 10, 227-235.                                                                                                                                                              | 7.1             | 31                 |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | PYRIMIDINE AND PURINE BIOSYNTHESIS AND DEGRADATION IN PLANTS. Annual Review of Plant Biology, 2006, 57, 805-836.                                                                                                                           | 18.7 | 492       |
| 128 | Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. Journal of Allergy and Clinical Immunology, 2006, 118, 711-718.                                                               | 2.9  | 56        |
| 129 | Reduced allergenicity of tomato fruits harvested from Lyc e 1–silenced transgenic tomato plants.<br>Journal of Allergy and Clinical Immunology, 2006, 118, 1176-1183.                                                                      | 2.9  | 86        |
| 130 | Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.<br>Journal of Plant Physiology, 2006, 163, 657-670.                                                                                   | 3.5  | 24        |
| 131 | Plant–microbe interactions to probe regulation of plant carbon metabolism. Journal of Plant<br>Physiology, 2006, 163, 307-318.                                                                                                             | 3.5  | 110       |
| 132 | Transgenic Flavonoid Tomato Intake Reduces C-Reactive Protein in Human C-Reactive Protein<br>Transgenic Mice More Than Wild-Type Tomato. Journal of Nutrition, 2006, 136, 2331-2337.                                                       | 2.9  | 58        |
| 133 | Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnology Journal, 2006, 4, 231-242.                                                                            | 8.3  | 102       |
| 134 | Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in<br>tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell<br>and Environment, 2006, 29, 126-137. | 5.7  | 148       |
| 135 | The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism. Journal of Experimental Botany, 2006, 57, 2363-2377.                                                                | 4.8  | 29        |
| 136 | Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta, 2005, 221, 479-492.                                                           | 3.2  | 76        |
| 137 | Expression of an Escherichia coli phosphoglucomutase in potato (Solanum tuberosum L.) results in minor changes in tuber metabolism and a considerable delay in tuber sprouting. Planta, 2005, 221, 915-927.                                | 3.2  | 18        |
| 138 | Ectopic Expression of Constitutively Activated RACB in Barley Enhances Susceptibility to Powdery Mildew and Abiotic Stress. Plant Physiology, 2005, 139, 353-362.                                                                          | 4.8  | 80        |
| 139 | The genotypic variation of the antioxidant potential of different tomato varieties. Free Radical Research, 2005, 39, 1005-1016.                                                                                                            | 3.3  | 37        |
| 140 | Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum.<br>FEBS Letters, 2005, 579, 827-831.                                                                                                     | 2.8  | 75        |
| 141 | A transposon-based activation-tagging population inArabidopsis thaliana(TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Letters, 2005, 579, 4622-4628.                           | 2.8  | 38        |
| 142 | No need to shift the paradigm on the metabolic pathway to transitory starch in leaves. Trends in Plant<br>Science, 2005, 10, 154-156.                                                                                                      | 8.8  | 35        |
| 143 | Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis<br>Thaliana. Frontiers in Bioscience - Landmark, 2004, 9, 1803.                                                                              | 3.0  | 41        |
| 144 | Local Induction of the alc Gene Switch in Transgenic Tobacco Plants by Acetaldehyde. Plant and Cell<br>Physiology, 2004, 45, 1566-1577.                                                                                                    | 3.1  | 27        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Impact of Altered Gibberellin Metabolism on Biomass Accumulation, Lignin Biosynthesis, and<br>Photosynthesis in Transgenic Tobacco Plants. Plant Physiology, 2004, 135, 254-265.                                                                  | 4.8  | 286       |
| 146 | RNAi-Mediated Tocopherol Deficiency Impairs Photoassimilate Export in Transgenic Potato Plants.<br>Plant Physiology, 2004, 135, 1256-1268.                                                                                                        | 4.8  | 157       |
| 147 | Target-based discovery of novel herbicides. Current Opinion in Plant Biology, 2004, 7, 219-225.                                                                                                                                                   | 7.1  | 54        |
| 148 | Temporally regulated expression of a yeast invertase in potato tubers allows dissection of the complex metabolic phenotype obtained following its constitutive expression. Plant Molecular Biology, 2004, 56, 91-110.                             | 3.9  | 40        |
| 149 | Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. Plant Journal, 2003, 35, 332-341.                                                             | 5.7  | 60        |
| 150 | Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant Journal, 2003, 36, 731-740.                                                                                             | 5.7  | 94        |
| 151 | Antibody jabs for plant enzymes. Nature Biotechnology, 2003, 21, 35-36.                                                                                                                                                                           | 17.5 | 3         |
| 152 | In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol. FEBS Letters, 2003, 535, 136-140.                                                                                         | 2.8  | 46        |
| 153 | Plant Biotechnology: From basic science to industrial applications. Journal of Plant Physiology, 2003, 160, 723-725.                                                                                                                              | 3.5  | 10        |
| 154 | Vitamin E biosynthesis: biochemistry meets cell biology. Trends in Plant Science, 2003, 8, 6-8.                                                                                                                                                   | 8.8  | 96        |
| 155 | Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers<br>(Solanum tuberosum). Journal of Experimental Botany, 2003, 54, 477-488.                                                                            | 4.8  | 91        |
| 156 | Production of Human Papillomavirus Type 16 Virus-Like Particles in Transgenic Plants. Journal of<br>Virology, 2003, 77, 9211-9220.                                                                                                                | 3.4  | 176       |
| 157 | Ethanol Vapor Is an Efficient Inducer of the alc Gene Expression System in Model and Crop Plant<br>Species. Plant Physiology, 2002, 129, 943-948.                                                                                                 | 4.8  | 57        |
| 158 | Potato tubers as bioreactors for palatinose production. Journal of Biotechnology, 2002, 96, 119-124.                                                                                                                                              | 3.8  | 36        |
| 159 | High-level production of the non-cariogenic sucrose isomer palatinose in transgenic tobacco plants<br>strongly impairs development. Planta, 2002, 214, 356-364.                                                                                   | 3.2  | 31        |
| 160 | Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to<br>impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant<br>Journal, 2002, 29, 281-293.                 | 5.7  | 124       |
| 161 | Cloning and molecular characterization of the Nicotiana tabacum purH cDNA encoding<br>5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate<br>cyclohydrolase. Journal of Plant Physiology, 2001, 158, 1591-1599. | 3.5  | 6         |
| 162 | Control of potato tuber sprouting. Trends in Plant Science, 2001, 6, 333-335.                                                                                                                                                                     | 8.8  | 111       |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Functional characterisation of Nicotiana tabacum xyloglucan endotransglycosylase ( Nt XET-1):<br>generation of transgenic tobacco plants and changes in cell wall xyloglucan. Planta, 2001, 212,<br>279-287.      | 3.2 | 44        |
| 164 | Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants. Planta, 2001, 213, 361-369. | 3.2 | 26        |
| 165 | Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. Plant Journal, 2001, 28, 529-543.      | 5.7 | 77        |
| 166 | Patterns of phenylpropanoids in non-inoculated and potato virus Y-inoculated leaves of transgenic tobacco plants expressing yeast-derived invertase. Phytochemistry, 2001, 56, 535-541.                           | 2.9 | 34        |
| 167 | Light at the end of the tunnel: from genes to function. Current Opinion in Biotechnology, 2001, 12, 123-125.                                                                                                      | 6.6 | 0         |
| 168 | 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Molecular Breeding, 2001, 7, 221-227.                                                                                               | 2.1 | 46        |
| 169 | Cloning and Characterization of the Gene Cluster for Palatinose Metabolism from the<br>Phytopathogenic Bacterium Erwinia rhapontici. Journal of Bacteriology, 2001, 183, 2425-2430.                               | 2.2 | 59        |
| 170 | A Small Decrease of Plastid Transketolase Activity in Antisense Tobacco Transformants Has Dramatic Effects on Photosynthesis and Phenylpropanoid Metabolism. Plant Cell, 2001, 13, 535.                           | 6.6 | 6         |
| 171 | A Small Decrease of Plastid Transketolase Activity in Antisense Tobacco Transformants Has Dramatic<br>Effects on Photosynthesis and Phenylpropanoid Metabolism. Plant Cell, 2001, 13, 535-551.                    | 6.6 | 304       |
| 172 | Improved Salt Tolerance of Transgenic Tobacco Expressing Apoplastic Yeast-Derived Invertase. Plant and Cell Physiology, 2001, 42, 245-249.                                                                        | 3.1 | 49        |
| 173 | Sugar Sensing and Regulation of Photosynthetic Carbon Metabolism. Advances in Photosynthesis and Respiration, 2001, , 109-120.                                                                                    | 1.0 | 4         |
| 174 | Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco.<br>Molecular Plant Pathology, 2000, 1, 51-59.                                                                      | 4.2 | 128       |
| 175 | Expression of the chemically inducible maize GST-27 promoter in potato. Potato Research, 2000, 43, 335-345.                                                                                                       | 2.7 | 2         |
| 176 | Comparative analysis of abscisic acid content and starch degradation during storage of tubers harvested from different potato varieties. Potato Research, 2000, 43, 371-382.                                      | 2.7 | 52        |
| 177 | Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. Journal of Experimental Botany, 2000, 51, 439-445.                                           | 4.8 | 86        |
| 178 | High CO2 -mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Letters, 2000, 479, 19-24.                                    | 2.8 | 85        |
| 179 | Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology, 1999, 10, 163-168.                                                                                                    | 6.6 | 49        |
| 180 | Application of transgenic plants in understanding responses to atmospheric change. Plant, Cell and<br>Environment, 1999, 22, 623-628.                                                                             | 5.7 | 19        |

0

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell and Environment, 1999, 22, 1177-1199.                              | 5.7  | 221       |
| 182 | Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. Plant Journal, 1999, 17, 407-413.                                                                                                                    | 5.7  | 42        |
| 183 | Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers. Plant Journal, 1999, 19, 119-129.                                                                                            | 5.7  | 84        |
| 184 | Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nature Biotechnology, 1999, 17, 708-711.                                                                                                                   | 17.5 | 189       |
| 185 | Inhibition of potato tuber sprouting: Low levels of cytosolic pyrophosphate lead to non-sprouting tubers harvested from transgenic potato plants. Potato Research, 1999, 42, 353-372.                                                                                     | 2.7  | 27        |
| 186 | Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta, 1999, 210, 41-49.                                                                                                                           | 3.2  | 60        |
| 187 | Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Letters, 1999, 461, 13-18.                                                                                                                                                               | 2.8  | 139       |
| 188 | An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature<br>Biotechnology, 1998, 16, 177-180.                                                                                                                                             | 17.5 | 251       |
| 189 | Molecular determinants of sink strength. Current Opinion in Plant Biology, 1998, 1, 207-216.                                                                                                                                                                              | 7.1  | 106       |
| 190 | Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta, 1998, 205, 428-437.             | 3.2  | 113       |
| 191 | Altered gene expression brought about by inter- and intracellularly formed hexoses and its possible implications for plant-pathogen interactions. Journal of Plant Research, 1998, 111, 323-328.                                                                          | 2.4  | 48        |
| 192 | Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant, Cell and Environment, 1998, 21, 285-299.                                                                                                                  | 5.7  | 58        |
| 193 | Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant, Cell and Environment, 1998, 21, 253-268. | 5.7  | 154       |
| 194 | A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant Journal, 1998, 14, 147-157.                                                                                 | 5.7  | 233       |
| 195 | Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant Journal, 1998, 15, 109-118.                                                                                 | 5.7  | 192       |
| 196 | The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Letters, 1998, 429, 147-151.                                                                                                                                                                | 2.8  | 74        |
| 197 | Transgenic Plants in Biochemistry and Plant Physiology. Progress in Botany Fortschritte Der Botanik,<br>1998, , 534-569.                                                                                                                                                  | 0.3  | 2         |
|     |                                                                                                                                                                                                                                                                           |      |           |

198 Sugar-Sensing: Evidence for Hexokinase-Independent Signal Perception in Plants. , 1998, , 2777-2781.

| #   | Article                                                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nature<br>Biotechnology, 1997, 15, 794-797.                                                                                                                                                                                                                | 17.5 | 197       |
| 200 | Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole or cytosol. Planta, 1997, 202, 126-136.                                                                                                                                                            | 3.2  | 64        |
| 201 | Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue<br>distributions, their levels during development, and their responses to low temperature. Plant, Cell<br>and Environment, 1997, 20, 291-305.                                                                                                    | 5.7  | 79        |
| 202 | Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant Journal, 1997, 12, 1045-1056.                                                                                                                                                     | 5.7  | 80        |
| 203 | Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Letters, 1996, 397, 239-244.                                                                                                                                                                            | 2.8  | 116       |
| 204 | The Role of Sugar Accumulation in Leaf Frost Hardiness — Investigations with Transgenic Tobacco<br>Expressing a Bacterial Pyrophosphatase or a Yeast Invertase Gene. Journal of Plant Physiology, 1996,<br>147, 604-610.                                                                                                                          | 3.5  | 19        |
| 205 | Manipulating metabolic partitioning in transgenic plants. Trends in Biotechnology, 1996, 14, 198-205.                                                                                                                                                                                                                                             | 9.3  | 30        |
| 206 | Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits<br>photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant Journal,<br>1996, 9, 671-681.                                                                                                                              | 5.7  | 107       |
| 207 | Apoplastic expression of the xylanase and ?(1?3, 1?4) glucanase domains of the xyn D gene from<br>Ruminococcus flavefaciens leads to functional polypeptides in transgenic tobacco plants. Molecular<br>Breeding, 1996, 2, 81.                                                                                                                    | 2.1  | 29        |
| 208 | Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta, 1996, 198, 246-52.                                                                                                                                                                                                                            | 3.2  | 173       |
| 209 | Phloem-specific expression of pyrophosphatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants. Plant, Cell and Environment, 1996, 19, 43-55.                                                                                                                                                                  | 5.7  | 109       |
| 210 | Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant, Cell and Environment, 1996, 19, 1115-1123.                                                                                                                                                                                                                      | 5.7  | 172       |
| 211 | Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. Plant Cell, 1996, 8, 793.                                                                                                                                                                                         | 6.6  | 93        |
| 212 | Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants<br>(Solanum tuberosum L.). Plant Journal, 1995, 7, 97-107.                                                                                                                                                                                      | 5.7  | 482       |
| 213 | A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes:<br>isolation of cDNAs encoding a new class of pathogenesis-related proteins. Plant Molecular Biology,<br>1995, 29, 1027-1038.                                                                                                                        | 3.9  | 56        |
| 214 | A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression<br>analysis. Plant Molecular Biology, 1995, 27, 567-576.                                                                                                                                                                                     | 3.9  | 74        |
| 215 | Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Molecular Biology, 1995, 29, 833-840.                                                                                                                                           | 3.9  | 49        |
| 216 | Transgenic tobacco plants with strongly decreased expression of pyrophosphate:<br>Fructose-6-phosphate 1-phosphotransferase do not differ significantly from wild type in<br>photosynthate partitioning, plant growth or their ability to cope with limiting phosphate, limiting<br>nitrogen and suboptimal temperatures. Planta, 1995, 196, 277. | 3.2  | 43        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Cloning and expression analysis of sucrose-phosphate synthase from sugar beet (Beta vulgaris L.).<br>Molecular Genetics and Genomics, 1995, 247, 515-520.                                                                         | 2.4  | 52        |
| 218 | A Thermostable Xylanase from Clostridium thermocellum Expressed at High Levels in the Apoplast of<br>Transgenic Tobacco Has No Detrimental Effects and Is Easily Purified. Nature Biotechnology, 1995, 13,<br>63-66.              | 17.5 | 103       |
| 219 | Elevated mRNA Levels of the Ribosomal Protein L19 and a Calmodulin-Like Protein in<br>Assimilate-Accumulating Transgenic Tobacco Plants. Plant Physiology, 1995, 107, 1451-1452.                                                  | 4.8  | 6         |
| 220 | Regulation of Metabolism in Transgenic Plants. Annual Review of Plant Biology, 1995, 46, 341-368.                                                                                                                                 | 14.3 | 219       |
| 221 | Molecular analysis of carbon partitioning in solanaceous species. Journal of Experimental Botany,<br>1995, 46, 587-607.                                                                                                           | 4.8  | 124       |
| 222 | Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be<br>complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants Plant Cell,<br>1995, 7, 259-270.      | 6.6  | 107       |
| 223 | Impaired Photoassimilate Partitioning Caused by Phloem-Specific Removal of Pyrophosphate Can Be<br>Complemented by a Phloem-Specific Cytosolic Yeast-Derived Invertase in Transgenic Plants. Plant Cell,<br>1995, 7, 259.         | 6.6  | 46        |
| 224 | A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants Plant Cell, 1994, 6, 601-612.                                                         | 6.6  | 51        |
| 225 | A Truncated Version of an ADP-Glucose Pyrophosphorylase Promoter from Potato Specifies Guard<br>Cell-Selective Expression in Transgenic Plants. Plant Cell, 1994, 6, 601.                                                         | 6.6  | 23        |
| 226 | Light-stimulated proton transport into the vacuoles of leaf mesophyll cells does not require energization by the tonoplast pyrophosphatase. Planta, 1994, 193, 203.                                                               | 3.2  | 8         |
| 227 | Accumulation of hexoses in leaf vacuoles: Studies with transgenic tobacco plants expressing yeast-derived invertase in the cytosol, vacuole or apoplasm. Planta, 1994, 194, 29.                                                   | 3.2  | 107       |
| 228 | Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant Journal, 1994, 6, 637-650.                                                                  | 5.7  | 155       |
| 229 | Manipulation of sink-source relations in transgenic plants. Plant, Cell and Environment, 1994, 17, 649-658.                                                                                                                       | 5.7  | 78        |
| 230 | Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta, 1993, 190, 247-52.                                                                                 | 3.2  | 133       |
| 231 | Characterisation of a gene that is expressed in leaves at higher levels upon tuberisation in potato and upon flowering in tobacco. Planta, 1993, 189, 593-6.                                                                      | 3.2  | 7         |
| 232 | Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta, 1993, 192, 16. | 3.2  | 47        |
| 233 | Cloning and expression analysis of β-isopropylmalate dehydrogenase from potato. Molecular Genetics and Genomics, 1993, 236-236, 309-314.                                                                                          | 2.4  | 20        |
|     |                                                                                                                                                                                                                                   |      |           |

234 STARCH SYNTHESIS IN TRANSGENIC PLANTS. , 1993, , 33-39.

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Apoplastic Expression of Yeast-Derived Invertase in Potato. Plant Physiology, 1992, 100, 301-308.                                                                                                                            | 4.8 | 155       |
| 236 | Molecular Approaches to Sink-Source Interactions. Plant Physiology, 1992, 99, 1267-1270.                                                                                                                                     | 4.8 | 88        |
| 237 | Cloning and expression analysis of the plastidic fructose-1,6-bisphosphatase coding sequence from potato: circumstantial evidence for the import of hexoses into chloroplasts. Planta, 1992, 188, 7-12.                      | 3.2 | 28        |
| 238 | Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli<br>pyrophosphatase in their cytosol. Planta, 1992, 188, 238-244.                                                             | 3.2 | 205       |
| 239 | Cloning and expression analysis of the plastidic fructose-1,6-bisphosphatase coding sequence from potato: circumstantial evidence for the import of hexoses into chloroplasts. Planta, 1992, 188, 7-12.                      | 3.2 | 78        |
| 240 | Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning Plant Journal, 1992, 2, 571-581.                                                                                    | 5.7 | 122       |
| 241 | Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant Journal, 1992, 2, 571-581.                                                                                   | 5.7 | 8         |
| 242 | Molecular Approaches to Influence Carbohydrate Metabolism in Transgenic Plants. , 1992, , 683-689.                                                                                                                           |     | 1         |
| 243 | Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or<br>apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant<br>Journal, 1991, 1, 95-106. | 5.7 | 230       |
| 244 | Cloning and expression analysis of a potato cDNA that encodes branching enzyme evidence for co-expression of starch biosynthetic genes. Molecular Genetics and Genomics, 1991, 230, 39-44.                                   | 2.4 | 115       |
| 245 | Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or<br>apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions Plant<br>Journal, 1991, 1, 95-106.  | 5.7 | 38        |
| 246 | Expression of Mutant Patatin Protein in Transgenic Tobacco Plants: Role of Glycans and Intracellular<br>Location. Plant Cell, 1990, 2, 345.                                                                                  | 6.6 | 16        |
| 247 | One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Molecular Genetics and Genomics, 1990, 224, 136-146.                                                   | 2.4 | 259       |
| 248 | Reconstitution of an active lactose carrier in vivo by simultaneous synthesis of two complementary protein fragments. Journal of Bacteriology, 1990, 172, 5374-5381.                                                         | 2.2 | 78        |
| 249 | Expression of mutant patatin protein in transgenic tobacco plants: role of glycans and intracellular<br>location Plant Cell, 1990, 2, 345-355.                                                                               | 6.6 | 47        |
| 250 | Gene expression during tuber development in potato plants. FEBS Letters, 1990, 268, 334-338.                                                                                                                                 | 2.8 | 64        |
| 251 | Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO<br>Journal, 1989, 8, 23-29.                                                                                                   | 7.8 | 370       |
| 252 | Expression of a Patatin-Like Protein in the Anthers of Potato and Sweet Pepper Flowers. Plant Cell,<br>1989, 1, 533.                                                                                                         | 6.6 | 15        |

| #   | Article                                                                                                                                                       | IF                | CITATIONS    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 253 | Immunocytochemical localization of patatin, the major glycoprotein in potato (Solanum tuberosum) Tj ETQq1 1                                                   | 1 0.784314<br>3.2 | rgBT /Overlo |
| 254 | Targeting and glycosylation of patatin the major potato tuber protein in leaves of transgenic tobacco.<br>Planta, 1989, 179, 171-180.                         | 3.2               | 71           |
| 255 | Truncated forms of Escherichia coli lactose permease: models for study of biosynthesis and membrane insertion. Journal of Bacteriology, 1988, 170, 2639-2645. | 2.2               | 28           |