
Sally Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteochondral Lesions of the Ankle Treated with Bone Marrow Concentrate with Hyaluronan and Fibrin: A Single-Centre Study. Cells, 2022, 11, 629.	1.8	4
2	Perlecan in the Natural and Cell Therapy Repair of Human Adult Articular Cartilage: Can Modifications in This Proteoglycan Be a Novel Therapeutic Approach?. Biomolecules, 2021, 11, 92.	1.8	12
3	Identification of Candidate Synovial Fluid Biomarkers for the Prediction of Patient Outcome After Microfracture or Osteotomy. American Journal of Sports Medicine, 2021, 49, 1512-1523.	1.9	11
4	An In Vitro System to Study the Effect of Subchondral Bone Health on Articular Cartilage Repair in Humans. Cells, 2021, 10, 1903.	1.8	3
5	Human Mesenchymal Stromal Cells Enhance Cartilage Healing in a Murine Joint Surface Injury Model. Cells, 2021, 10, 1999.	1.8	6
6	Cell therapy for cartilage repair. Emerging Topics in Life Sciences, 2021, 5, 575-589.	1.1	24
7	ls Osteogenic Differentiation of Human Nucleus Pulposus Cells a Possibility for Biological Spinal Fusion?. Cartilage, 2020, 11, 181-191.	1.4	12
8	John P. O'Brien. Spine, 2020, 45, 635-640.	1.0	0
9	Characterization of regional meniscal cell and chondrocyte phenotypes and chondrogenic differentiation with histological analysis in osteoarthritic donor-matched tissues. Scientific Reports, 2020, 10, 21658.	1.6	7
10	The synovial fluid from patients with focal cartilage defects contains mesenchymal stem/stromal cells and macrophages with pro- and anti-inflammatory phenotypes. Osteoarthritis and Cartilage Open, 2020, 2, 100039.	0.9	6
11	Current Treatment Options for Intervertebral Disc Pathologies. Cartilage, 2020, 11, 143-151.	1.4	27
12	A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Research and Therapy, 2019, 10, 99.	2.4	53
13	Predictors of fracture healing in patients with recalcitrant nonunions treated with autologous culture expanded bone marrowâ€derived mesenchymal stromal cells. Journal of Orthopaedic Research, 2019, 37, 1303-1309.	1.2	7
14	Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential. Cartilage, 2019, 10, 467-479.	1.4	34
15	Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc?. Stem Cells and Development, 2018, 27, 147-165.	1.1	26
16	Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation. Arthritis Research and Therapy, 2018, 20, 87.	1.6	7
17	Magnetic Resonance Imaging Parameters at 1 Year Correlate With Clinical Outcomes Up to 17 Years After Autologous Chondrocyte Implantation. Orthopaedic Journal of Sports Medicine, 2018, 6, 232596711878828.	0.8	33
18	Development of a Tool to Predict Outcome of Autologous Chondrocyte Implantation. Cartilage, 2017, 8, 119-130.	1.4	25

#	Article	IF	CITATIONS
19	Staying connected: structural integration at the intervertebral disc–vertebra interface of human lumbar spines. European Spine Journal, 2017, 26, 248-258.	1.0	50
20	Efficacy and safety of autologous cell therapies for knee cartilage defects (autologous stem cells,) Tj ETQq0 0 493-501.	0 rgBT /Ove 0.8	erlock 10 Tf 50 12
21	The Absence of Detectable ADAMTS-4 (Aggrecanase-1) Activity in Synovial Fluid Is a Predictive Indicator of Autologous Chondrocyte Implantation Success. American Journal of Sports Medicine, 2017, 45, 1806-1814.	1.9	10
22	Contaminants in commercial preparations of â€~purified' small leucine-rich proteoglycans may distort mechanistic studies. Bioscience Reports, 2017, 37, .	1.1	3
23	Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles. Arthritis Research and Therapy, 2017, 19, 150.	1.6	19
24	A case study: Glycosaminoglycan profiles of autologous chondrocyte implantation (ACI) tissue improve as the tissue matures. Knee, 2017, 24, 149-157.	0.8	5
25	Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat. Stem Cells International, 2016, 2016, 1-11.	1.2	44
26	Temporal Analyses of the Response of Intervertebral Disc Cells and Mesenchymal Stem Cells to Nutrient Deprivation. Stem Cells International, 2016, 2016, 1-13.	1.2	14
27	Ageing in the musculoskeletal system. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 87, 15-25.	1.2	82
28	Biological challenges for regeneration of the degenerated disc using cellular therapies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 87, 39-46.	1.2	20
29	Evaluating Joint Morbidity after Chondral Harvest for Autologous Chondrocyte Implantation (ACI). Cartilage, 2016, 7, 7-15.	1.4	37
30	Cellular senescence in aging and osteoarthritis. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 87, 6-14.	1.2	96
31	Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus. Scientific Reports, 2016, 6, 24295.	1.6	56
32	Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton's jelly and bone marrow. FEBS Open Bio, 2016, 6, 1054-1066.	1.0	37
33	Autologous Bone Plug Supplemented With Autologous Chondrocyte Implantation in Osteochondral Defects of the Knee. American Journal of Sports Medicine, 2016, 44, 1249-1259.	1.9	16
34	High content and high throughput screening to assess the angiogenic and neurogenic actions of mesenchymal stem cells in vitro. Experimental Cell Research, 2015, 333, 93-104.	1.2	3
35	Cartilage Repair in the Hip. , 2014, , 259-266.		1
36	Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells. Spine Journal, 2014, 14, 1722-1733.	0.6	20

#	Article	IF	CITATIONS
37	Bone Marrow-Derived Mesenchymal Stem Cells Become Antiangiogenic When Chondrogenically or Osteogenically Differentiated: Implications for Bone and Cartilage Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 147-159.	1.6	35
38	Cell sources for nucleus pulposus regeneration. European Spine Journal, 2014, 23, 364-374.	1.0	48
39	Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. European Spine Journal, 2014, 23, 2462-2472.	1.0	22
40	Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. European Spine Journal, 2014, 23, 315-323.	1.0	53
41	Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. European Spine Journal, 2014, 23, 344-353.	1.0	94
42	Cell Cultured Chondrocyte Implantation and Scaffold Techniques for Osteochondral Talar Lesions. Foot and Ankle Clinics, 2013, 18, 135-150.	0.5	19
43	Characterization of the cells in repair tissue following autologous chondrocyte implantation in mankind: a novel report of two cases. Regenerative Medicine, 2013, 8, 699-709.	0.8	9
44	Increased Production of Clusterin in Biopsies of Repair Tissue following Autologous Chondrocyte Implantation. Cartilage, 2013, 4, 227-238.	1.4	8
45	Fourier Transform Infrared Imaging and Infrared Fiber Optic Probe Spectroscopy Identify Collagen Type in Connective Tissues. PLoS ONE, 2013, 8, e64822.	1.1	43
46	Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord. BioMed Research International, 2013, 2013, 1-8.	0.9	107
47	Surgeons and scientists: symbiosis in spinal research?. European Spine Journal, 2012, 21, 1681-1683.	1.0	0
48	A comparative evaluation of the small leucine-rich proteoglycans of pathological human intervertebral discs. European Spine Journal, 2012, 21, 154-159.	1.0	48
49	Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). European Spine Journal, 2012, 21, 149-155.	1.0	20
50	A mathematical model of cartilage regeneration after cell therapy. Journal of Theoretical Biology, 2011, 289, 136-150.	0.8	18
51	International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. Cartilage, 2011, 2, 153-172.	1.4	130
52	The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture. , 2011, 22, 97-108.		48
53	Lubricin. Cartilage, 2010, 1, 298-305.	1.4	5
54	A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. American Journal of Sports Medicine, 2010, 38, 880-890.	1.9	250

#	Article	IF	CITATIONS
55	Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining. European Spine Journal, 2009, 18, 1587-1594.	1.0	34
56	Nucleus pulposus cells as competent phagocytes to clear apoptotic cells: mission applicable or impossible? Authors' response. Arthritis Research and Therapy, 2009, 11, 406.	1.6	0
57	Intervertebral Disc Cell Death in the Porcine and Human Injured Cervical Spine After Trauma. Spine, 2009, 34, 131-140.	1.0	24
58	Mechanical Stimulation Alters Pleiotrophin and Aggrecan Expression by Human Intervertebral Disc Cells and Influences Their Capacity to Stimulate Endothelial Cell Migration. Spine, 2009, 34, 663-669.	1.0	27
59	Tissue engineering and the intervertebral disc: the challenges. European Spine Journal, 2008, 17, 480-491.	1.0	192
60	Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskeletal Disorders, 2008, 9, 24.	0.8	64
61	The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: implications for degenerative disc disease. Arthritis Research and Therapy, 2008, 10, R46.	1.6	58
62	Collagen Turnover in Normal and Degenerate Human Intervertebral Discs as Determined by the Racemization of Aspartic Acid. Journal of Biological Chemistry, 2008, 283, 8796-8801.	1.6	117
63	The Presence of Pleiotrophin in the Human Intervertebral Disc Is Associated With Increased Vascularization. Spine, 2007, 32, 1295-1302.	1.0	44
64	Bone marrow stromal cells stimulate neurite outgrowth over neural proteoglycans (CSPG), myelin associated glycoprotein and Nogo-A. Biochemical and Biophysical Research Communications, 2007, 354, 559-566.	1.0	71
65	Glycosaminoglycan profiles of repair tissue formed following autologous chondrocyte implantation differ from control cartilage. Arthritis Research and Therapy, 2007, 9, R79.	1.6	39
66	A Randomized Trial Comparing Autologous Chondrocyte Implantation with Microfracture. Journal of Bone and Joint Surgery - Series A, 2007, 89, 2105-2112.	1.4	590
67	Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. Journal of Anatomy, 2007, 210, 460-471.	0.9	144
68	A Randomized Trial Comparing Autologous Chondrocyte Implantation with Microfracture. Journal of Bone and Joint Surgery - Series A, 2007, 89, 2105-2112.	1.4	398
69	Autologous chondrocyte implantation with bone grafting for osteochondral defect due to posttraumatic osteonecrosis of the hip—a case report. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 77, 333-336.	1.2	73
70	Human Intervertebral Disc Cells Promote Nerve Growth Over Substrata of Human Intervertebral Disc Aggrecan. Spine, 2006, 31, 1187-1193.	1.0	42
71	Aggrecan Turnover in Human Intervertebral Disc as Determined by the Racemization of Aspartic Acid*. Journal of Biological Chemistry, 2006, 281, 13009-13014.	1.6	78
72	Histology and Pathology of the Human Intervertebral Disc. Journal of Bone and Joint Surgery - Series A. 2006. 88. 10-14.	1.4	571

#	Article	IF	CITATIONS
73	Human Intervertebral Disc Aggrecan Inhibits Endothelial Cell Adhesion and Cell Migration In Vitro. Spine, 2005, 30, 1139-1147.	1.0	129
74	TNF?-stimulated gene product (TSG-6) and its binding protein, I?I, in the human intervertebral disc: new molecules for the disc. European Spine Journal, 2005, 14, 36-42.	1.0	32
75	Inflammatory Mediators as Potential Therapeutic Targets in the Spine. Inflammation and Allergy: Drug Targets, 2005, 4, 257-266.	3.1	20
76	Autologous Chondrocyte Implantation in Knee Joint: MR Imaging and Histologic Features at 1-year Follow-up. Radiology, 2005, 234, 501-508.	3.6	136
77	Microscopic Methods for the Analysis of Engineered Tissues. , 2004, 238, 171-196.		7
78	Autologous Chondrocyte Implantation Compared with Microfracture in the Knee. Journal of Bone and Joint Surgery - Series A, 2004, 86, 455-464.	1.4	1,120
79	Degeneration of the intervertebral disc. Arthritis Research, 2003, 5, 120.	2.0	976
80	Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Research, 2003, 5, R60.	2.0	287
81	Cells of the intervertebral disc: Making the best of a bad environment. Biochemist, 2003, 25, 15-17.	0.2	7
82	HISTOLOGICAL ASSESSMENT OF CARTILAGE REPAIR. Journal of Bone and Joint Surgery - Series A, 2003, 85, 45-57.	1.4	485
83	Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). Journal of Bone and Joint Surgery - Series A, 2003, 85-A Suppl 2, 45-57.	1.4	177
84	Increased Nerve and Blood Vessel Ingrowth Associated With Proteoglycan Depletion in an Ovine Anular Lesion Model of Experimental Disc Degeneration. Spine, 2002, 27, 1278-1285.	1.0	159
85	Cells From Different Regions of the Intervertebral Disc. Spine, 2002, 27, 1018-1028.	1.0	157
86	Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis and Rheumatism, 2002, 46, 2658-2664.	6.7	165
87	Elastic fibre organization in the intervertebral discs of the bovine tail. Journal of Anatomy, 2002, 201, 465-475.	0.9	154
88	Cell Cluster Formation in Degenerate Lumbar Intervertebral Discs is Associated with Increased Disc Cell Proliferation. Connective Tissue Research, 2001, 42, 197-207.	1.1	156
89	Matrix turnover in human cartilage repair tissue in autologous chondrocyte implantation. Arthritis and Rheumatism, 2001, 44, 2586-2598.	6.7	115
90	Matrix Metalloproteinases And Aggrecanase. Spine, 2000, 25, 3005-3013.	1.0	438

#	Article	IF	CITATIONS
91	Matrix Metalloproteinases in the Human Intervertebral Disc: Role in Disc Degeneration and Scoliosis. Spine, 1997, 22, 2877-2884.	1.0	187
92	Development and degeneration of the intervertebral discs. Trends in Molecular Medicine, 1995, 1, 329-335.	2.6	89
93	Proteoglycan components of the intervertebral disc and cartilage endplate: an immunolocalization study of animal and human tissues. The Histochemical Journal, 1994, 26, 402-411.	0.6	69