Dong-Kyun Ko

List of Publications by Citations

Source: https://exaly.com/author-pdf/8059218/dong-kyun-ko-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 792 12 27 g-index

27 900 8.4 4.28 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites. <i>Nano Letters</i> , 2011 , 11, 2841-4	11.5	200
23	Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. <i>Applied Physics Letters</i> , 2006 , 89, 223116	3.4	110
22	Photovoltaic Performance of PbS Quantum Dots Treated with Metal Salts. <i>ACS Nano</i> , 2016 , 10, 3382-8	16.7	70
21	p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. <i>Advanced Materials</i> , 2014 , 26, 4845-50	24	64
20	Protein-directed self-assembly of a fullerene crystal. <i>Nature Communications</i> , 2016 , 7, 11429	17.4	47
19	Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence, 2019, 6, 7	9.2	46
18	Probing the Fermi energy level and the density of states distribution in PbTe nanocrystal (quantum dot) solids by temperature-dependent thermopower measurements. <i>ACS Nano</i> , 2011 , 5, 4810-7	16.7	45
17	Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices. <i>Chemistry of Materials</i> , 2011 , 23, 465	57 ² 4659	9 ⁴¹
16	Carrier distribution and dynamics of nanocrystal solids doped with artificial atoms. <i>Nano Letters</i> , 2010 , 10, 1842-7	11.5	40
15	Silver Selenide Colloidal Quantum Dots for Mid-Wavelength Infrared Photodetection. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1631-1636	5.6	25
14	Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material. <i>ACS Applied Materials & Applied & App</i>	9.5	19
13	Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. <i>Nanoscale</i> , 2019 , 11, 17498-17505	7.7	16
12	High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template. <i>Nanoscale Advances</i> , 2020 , 2, 368-376	5.1	11
11	Scalable Van der Waals Two-Dimensional PtTe Layers Integrated onto Silicon for Efficient Near-to-Mid Infrared Photodetection. <i>ACS Applied Materials & District Acros</i> , 2021, 13, 15542-15550	9.5	11
10	Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. <i>ACS Applied Materials & Devices</i> , 2021, 13, 937-943	9.5	9
9	The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13798-13810	7.1	9
8	Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. <i>Applied Materials Today</i> , 2020 , 20, 100718	6.6	8

LIST OF PUBLICATIONS

7	Ligand engineering of mid-infrared Ag2Se colloidal quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2020 , 124, 114223	3	7	
6	(Invited) Mid-Infrared Colloidal Quantum Dot Based Nanoelectronics and Nano-Optoelectronics. <i>ECS Transactions</i> , 2019 , 92, 11-16	1	4	
5	Midwavelength Infrared p-n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. <i>ACS Applied Materials & Document (Materials & Document)</i> 13, 49043-49049	9.5	3	
4	Mid-Wavelength Infrared Responsivity of Colloidal Quantum Dot/Organic Hybrid Photodetectors. <i>ECS Transactions</i> , 2020 , 97, 109-115	1	2	
3	Property engineering through nanomaterial chemical transformation of colloidal nanocrystal thin films. <i>Applied Surface Science</i> , 2020 , 513, 145721	6.7	1	
2	High-Performance Oxide-Based p-n Heterojunctions Integrating p-SnO and n-InGaZnO. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 55676-55686	9.5	1	
1	Photoluminescence in PbS nanocrystal thin films: Nanocrystal density, film morphology and energy transfer. <i>Journal of Applied Physics</i> , 2020 , 128, 134301	2.5	1	