
Dong-Kyun Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt–Sb ₂ Te ₃ Nanocomposites. Nano Letters, 2011, 11, 2841-2844.	9.1	230
2	Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Applied Physics Letters, 2006, 89, 223116.	3.3	116
3	Photovoltaic Performance of PbS Quantum Dots Treated with Metal Salts. ACS Nano, 2016, 10, 3382-3388.	14.6	75
4	Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence, 2019, 6, 7.	12.1	73
5	pâ€iâ€n Heterojunction Solar Cells with a Colloidal Quantumâ€Dot Absorber Layer. Advanced Materials, 2014, 26, 4845-4850.	21.0	67
6	Probing the Fermi Energy Level and the Density of States Distribution in PbTe Nanocrystal (Quantum) Tj ETQq0 0	0_rgBT /O	verlock 10 T
7	Protein-directed self-assembly of a fullerene crystal. Nature Communications, 2016, 7, 11429.	12.8	55

8	Near-Infrared Absorption of Monodisperse Silver Telluride (Ag ₂ Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices. Chemistry of Materials, 2011, 23, 4657-4659.	6.7	51
9	Silver Selenide Colloidal Quantum Dots for Mid-Wavelength Infrared Photodetection. ACS Applied Nano Materials, 2019, 2, 1631-1636.	5.0	47
10	Carrier Distribution and Dynamics of Nanocrystal Solids Doped with Artificial Atoms. Nano Letters, 2010, 10, 1842-1847.	9.1	45
11	Scalable Van der Waals Two-Dimensional PtTe ₂ Layers Integrated onto Silicon for Efficient Near-to-Mid Infrared Photodetection. ACS Applied Materials & Interfaces, 2021, 13, 15542-15550.	8.0	27
12	Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells. Nanoscale, 2019, 11, 17498-17505.	5.6	26
13	Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material. ACS Applied Materials & Interfaces, 2016, 8, 22182-22189.	8.0	23
14	High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template. Nanoscale Advances, 2020, 2, 368-376.	4.6	21
15	Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Applied Materials Today, 2020, 20, 100718.	4.3	21
16	The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors. Journal of Materials Chemistry C, 2020, 8, 13798-13810.	5.5	18
17	Vertically Stacked Intraband Quantum Dot Devices for Mid-Wavelength Infrared Photodetection. ACS Applied Materials & Interfaces, 2021, 13, 937-943.	8.0	18
18	Ligand engineering of mid-infrared Ag2Se colloidal quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114223.	2.7	14

DONG-ΚΥ**UN** KO

#	Article	IF	CITATIONS
19	Midwavelength Infrared p–n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS Applied Materials & Interfaces, 2021, 13, 49043-49049.	8.0	14
20	<i>(Invited) </i> Mid-Infrared Colloidal Quantum Dot Based Nanoelectronics and Nano-Optoelectronics. ECS Transactions, 2019, 92, 11-16.	0.5	5
21	Peel-and-Stick Integration of Atomically Thin Nonlayered PtS Semiconductors for Multidimensionally Stretchable Electronic Devices. ACS Applied Materials & Interfaces, 2022, 14, 20268-20279.	8.0	5
22	Photoluminescence in PbS nanocrystal thin films: Nanocrystal density, film morphology and energy transfer. Journal of Applied Physics, 2020, 128, 134301.	2.5	4
23	High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnO <i>_x</i> and n-InGaZnO. ACS Applied Materials & Interfaces, 2021, 13, 55676-55686.	8.0	4
24	Mid-Wavelength Infrared Responsivity of Colloidal Quantum Dot/Organic Hybrid Photodetectors. ECS Transactions, 2020, 97, 109-115.	0.5	2
25	Property engineering through nanomaterial chemical transformation of colloidal nanocrystal thin films. Applied Surface Science, 2020, 513, 145721.	6.1	2
26	Intraband Quantum Dot Barrier Devices - Optimization of Energy Level Alignment. ECS Transactions, 2021, 102, 45-51.	0.5	2
27	Mid-Wavelength Infrared Responsivity of Colloidal Quantum Dot/Organic Hybrid Photodetectors. ECS Meeting Abstracts, 2020, MA2020-01, 1049-1049.	0.0	1