Sridhar Vadahanambi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8058923/publications.pdf

Version: 2024-02-01

61 papers

2,043 citations

236612 25 h-index 243296 44 g-index

62 all docs

62 docs citations

62 times ranked 3055 citing authors

#	Article	IF	CITATIONS
1	Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode. ACS Nano, 2013, 7, 4242-4251.	7.3	192
2	Electro-active graphene–Nafion actuators. Carbon, 2011, 49, 1279-1289.	5.4	187
3	Defect-Engineered Three-Dimensional Graphene–Nanotube–Palladium Nanostructures with Ultrahigh Capacitance. ACS Nano, 2012, 6, 10562-10570.	7.3	141
4	Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. EXPRESS Polymer Letters, 2013, 7, 320-328.	1.1	110
5	Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon, 2010, 48, 2953-2957.	5 . 4	101
6	Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Composites Science and Technology, 2010, 70, 584-592.	3.8	85
7	Arsenic Removal from Contaminated Water Using Three-Dimensional Graphene-Carbon Nanotube-Iron Oxide Nanostructures. Environmental Science & Environology, 2013, 47, 130904083814004.	4.6	79
8	An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon, 2013, 53, 391-398.	5.4	65
9	Electrospun Fullerenol-Cellulose Biocompatible Actuators. Biomacromolecules, 2011, 12, 2048-2054.	2.6	59
10	Microwave syntheses of graphene and graphene decorated with metal nanoparticles. Carbon, 2011, 49, 4449-4457.	5.4	59
11	Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon, 2015, 87, 186-192.	5 . 4	45
12	Impedance analysis and electromagnetic interference shielding effectiveness of conductive carbon black reinforced microcellular EPDM rubber vulcanizates. Polymer Composites, 2008, 29, 465-472.	2.3	43
13	Fluoroelastomerâ€MWNT nanocompositesâ€1: Dispersion, morphology, physicoâ€mechanical, and thermal properties. Polymer Composites, 2009, 30, 121-130.	2.3	43
14	A coagulation technique for purification of graphene sheets with graphene–reinforced PVA hydrogel as byproduct. Journal of Colloid and Interface Science, 2010, 348, 384-387.	5.0	42
15	Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. Journal of Alloys and Compounds, 2018, 732, 799-805.	2.8	40
16	Dielectric properties of exfoliated graphite reinforced flouroelastomer composites. Journal of Applied Polymer Science, 2009, 111, 1358-1368.	1.3	37
17	The effect of physical treatments of waste rubber powder on the mechanical properties of the revulcanizate. Journal of Applied Polymer Science, 2009, 112, 3048-3056.	1.3	36
18	Barrier properties of chlorobutyl nanoclay composites. Journal of Applied Polymer Science, 2006, 101, 3630-3637.	1.3	35

#	Article	IF	Citations
19	Graphene $\hat{a} \in \text{``carbon nanotube } \hat{a} \in \text{``Mn 3 O 4 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 106-111.}$	2.8	35
20	Carbon sheathed molybdenum nitride nanoparticles anchored on reduced graphene oxide as high-capacity sodium-ion battery anodes and supercapacitors. New Journal of Chemistry, 2018, 42, 5668-5673.	1.4	34
21	Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder. Waste Management, 2009, 29, 1058-1066.	3.7	33
22	Microwave extraction of graphene from carbon fibers. Carbon, 2011, 49, 222-226.	5.4	33
23	Manganese nitride stabilized on reduced graphene oxide substrate for high performance sodium ion batteries, super-capacitors and EMI shielding. Journal of Alloys and Compounds, 2019, 808, 151748.	2.8	31
24	Hydroquinone as a single precursor for concurrent reduction and growth of carbon nanotubes on graphene oxide. RSC Advances, 2015, 5, 68270-68275.	1.7	29
25	Effect of fillers on the relaxation behavior of chlorobutyl vulcanizates. Journal of Applied Polymer Science, 2006, 100, 3161-3173.	1.3	26
26	Hollow SnO ₂ @carbon core–shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries. New Journal of Chemistry, 2017, 41, 442-446.	1.4	26
27	Nitrogen doped holey carbon nano-sheets as anodes in sodium ion battery. RSC Advances, 2016, 6, 38112-38116.	1.7	25
28	Electro-chemo-mechanical characteristics of fullerene-reinforced ionic polymer–metal composite transducers. Smart Materials and Structures, 2010, 19, 075009.	1.8	24
29	Dielectric properties of nanotube reinforced butyl elastomer composites. Journal of Applied Polymer Science, 2009, 113, 1690-1700.	1.3	23
30	Carbon encapsulated cobalt sulfide nano-particles anchored on reduced graphene oxide as high capacity anodes for sodium-ion batteries and glucose sensor. Journal of Alloys and Compounds, 2018, 764, 490-497.	2.8	23
31	Taguchi method for optimization of reaction conditions in microwave glycolysis of waste PET. Journal of Material Cycles and Waste Management, 2020, 22, 664-672.	1.6	23
32	Microwave synthesis of three dimensional graphene-based shell-plate hybrid nanostructures. Carbon, 2013, 61, 633-639.	5.4	20
33	Preparation and characterization of polypropylene and waste tire powder modified by allylamine blends. Polymers for Advanced Technologies, 2009, 20, 620-625.	1.6	18
34	Optimization of carbon black and nanoclay filler loading in chlorobutyl vulcanizates using response surface methodology. Polymer Composites, 2009, 30, 691-701.	2.3	18
35	Dielectric studies of conductive carbon black reinforced microcellular ethylene–propylene–diene monomer vulcanizates. Journal of Applied Polymer Science, 2007, 106, 192-204.	1.3	16
36	Relaxation behavior of conductive carbon black reinforced EPDM microcellular vulcanizates. Polymer Engineering and Science, 2007, 47, 984-995.	1.5	16

#	Article	lF	CITATIONS
37	Bound rubber in chlorobutyl compounds: Influence of filler type and storage time. Journal of Applied Polymer Science, 2006, 102, 715-720.	1.3	13
38	Zeolitic imidazolate frameworks as novel precursors for microwave synthesis of carbon nanotubes. Journal of Alloys and Compounds, 2019, 781, 166-173.	2.8	13
39	Polypropylene–waste ground rubber tire powder microcellular composites: Effect of processing variables on morphology and physicoâ€mechanical properties. Polymer Composites, 2008, 29, 1276-1284.	2.3	12
40	Sugar-derived disordered carbon nano-sheets as high-performance electrodes in sodium-ion batteries. New Journal of Chemistry, 2017, 41, 4286-4290.	1.4	12
41	Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water. Materials, 2020, 13, 4144.	1.3	12
42	Dynamic mechanical and dielectric relaxation characteristics of microcellular rubber composites. Polymers for Advanced Technologies, 2008, 19, 1311-1322.	1.6	11
43	Dielectric and dynamic mechanical relaxation behavior of exfoliated nano graphite reinforced flouroelastomer composites. Polymer Composites, 2009, 30, 334-342.	2.3	11
44	Blister Packing of Copper Hydroxide and Titania Nanoparticles on Graphene and Its Recycling. ACS Applied Materials & Diterfaces, 2013, 5, 12323-12328.	4.0	11
45	Microwave induced transformation of metal organic frameworks into defect rich carbon nanofibers. New Journal of Chemistry, 2020, 44, 5666-5672.	1.4	10
46	AC conductivity and positive temperature coefficient effect in microcellular EPDM vulcanizates. Polymer Composites, 2008, 29, 1125-1136.	2.3	9
47	Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding. Molecules, 2021, 26, 1018.	1.7	9
48	Relaxation behavior of carbon silica dual phase filler reinforced chlorobutyl vulcanizates. Journal of Applied Polymer Science, 2006, 101, 4320-4327.	1.3	7
49	Dielectric relaxation of Ensaco®350G reinforced microcellular EPDM vulcanizates. Polymer Composites, 2007, 28, 657-666.	2.3	7
50	Effect of carbon blacks on relaxation phenomenon of chlorobutyl vulcanizates. Journal of Applied Polymer Science, 2006, 102, 1809-1820.	1.3	6
51	Role of Different Nanoparticles in Elastomeric Nanocomposites. Advanced Structured Materials, 2011, , 3-55.	0.3	6
52	3D functional hetero-nanostructures of vertically anchored metal oxide nanowire arrays on porous graphene substrates. Carbon, 2014, 79, 330-336.	5.4	6
53	3D graphene–carbon nanotube–nickel ensembles as anodes in sodium-ion batteries. RSC Advances, 2016, 6, 99914-99918.	1.7	6
54	Extraction of Microfibrillar Cellulose From Waste Paper by NaOH/Urethane Aqueous System and Its Utility in Removal of Lead from Contaminated Water. Materials, 2020, 13, 2850.	1.3	6

#	Article	IF	CITATIONS
55	Metal Organic Framework Derived MnO2-Carbon Nanotubes for Efficient Oxygen Reduction Reaction and Arsenic Removal from Contaminated Water. Nanomaterials, 2020, 10, 1895.	1.9	6
56	Vitamin Derived Nitrogen Doped Carbon Nanotubes for Efficient Oxygen Reduction Reaction and Arsenic Removal from Contaminated Water. Materials, 2020, 13, 1686.	1.3	6
57	Metal-Organic Framework Reinforced Acrylic Polymer Marine Coatings. Materials, 2022, 15, 27.	1.3	5
58	A Novel Biocompatible Actuator Based on Electrospun Cellulose Acetate. Advanced Materials Research, 2011, 214, 359-363.	0.3	3
59	DABCO Derived Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction (ORR) and Removal of Hexavalent Chromium from Contaminated Water. Materials, 2021, 14, 2871.	1.3	2
60	Coordination Polymer Framework-Derived Ni-N-Doped Carbon Nanotubes for Electro-Oxidation of Urea. Materials, 2022, 15, 2048.	1.3	2
61	Physico-mechanical, dynamic mechanical, and swelling properties of sodium chloride filled chlorobutyl vulcanizates. Journal of Applied Polymer Science, 2006, 102, 707-714.	1.3	0