Richard Alley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8058717/publications.pdf Version: 2024-02-01

		7568	7518
208	24,755	77	151
papers	citations	h-index	g-index
223	223	223	12279
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-decadal basal slip enhancement at Saskatchewan Glacier, Canadian Rocky Mountains. Journal of Glaciology, 2023, 69, 71-86.	2.2	1
2	Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland. Journal of Glaciology, 2022, 68, 812-828.	2.2	10
3	Controls on Larsen C Ice Shelf Retreat From a 60‥ear Satellite Data Record. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	14
4	Grounding zone subglacial properties from calibrated active-source seismic methods. Cryosphere, 2021, 15, 1863-1880.	3.9	6
5	The Paris Climate Agreement and future sea-level rise from Antarctica. Nature, 2021, 593, 83-89.	27.8	219
6	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	12.6	61
7	Bedforms of Thwaites Glacier, West Antarctica: Character and Origin. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006339.	2.8	12
8	Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology, 2020, 48, 268-272.	4.4	49
9	Interpretation of topography and bed properties beneath Thwaites Glacier, West Antarctica using seismic reflection methods. Earth and Planetary Science Letters, 2020, 550, 116543.	4.4	10
10	Application of Constitutive Friction Laws to Glacier Seismicity. Geophysical Research Letters, 2020, 47, e2020GL088964.	4.0	19
11	Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth, 2020, 3, 691-703.	6.8	52
12	Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica. Annals of Glaciology, 2019, 60, 82-90.	1.4	10
13	Magnetic anisotropy and debris-dependent rheological heterogeneity within stratified basal ice. Journal of Glaciology, 2019, 65, 770-779.	2.2	5
14	Troughs developed in ice-stream shear margins precondition ice shelves for ocean-driven breakup. Science Advances, 2019, 5, eaax2215.	10.3	37
15	Ice-cliff failure via retrogressive slumping. Geology, 2019, 47, 449-452.	4.4	30
16	Temperatureâ€Driven Bubble Migration as Proxy for Internal Bubble Pressures and Bubble Trapping Function in Ice Cores. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10264-10282.	3.3	3
17	Instruments and methods: a case study of ice core bubbles as strain indicators. Annals of Glaciology, 2019, 60, 8-19.	1.4	2
18	Advances in weather prediction. Science, 2019, 363, 342-344.	12.6	116

#	Article	IF	CITATIONS
19	The impact of spatially-variable basal properties on outlet glacier flow. Earth and Planetary Science Letters, 2019, 515, 200-208.	4.4	20
20	Characterization of Regionalâ€Scale CO ₂ Transport Uncertainties in an Ensemble with Flowâ€Dependent Transport Errors. Geophysical Research Letters, 2019, 46, 4049-4058.	4.0	18
21	Evaluation of ice-stream model sensitivities for parameter estimation. Earth and Planetary Science Letters, 2019, 516, 49-55.	4.4	2
22	Wet subglacial bedforms of the NE Greenland Ice Stream shear margins. Annals of Glaciology, 2019, 60, 91-99.	1.4	10
23	The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting. Climate of the Past, 2019, 15, 1793-1808.	3.4	38
24	The polar regions in a 2°C warmer world. Science Advances, 2019, 5, eaaw9883.	10.3	289
25	Glacial erosion: status and outlook. Annals of Glaciology, 2019, 60, 1-13.	1.4	73
26	Enhanced Firn Densification in Highâ€Accumulation Shear Margins of the NE Greenland Ice Stream. Journal of Geophysical Research F: Earth Surface, 2019, 124, 365-382.	2.8	20
27	Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth and Planetary Science Letters, 2019, 507, 199-206.	4.4	40
28	Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2019, 124, 97-115.	2.8	12
29	A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet. Geoscientific Model Development, 2018, 11, 5149-5172.	3.6	9
30	Lithospheric Structure of Greenland From Ambient Noise and Earthquake Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 7850-7876.	3.4	15
31	Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. Cryosphere, 2018, 12, 325-341.	3.9	10
32	How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Global and Planetary Change, 2017, 153, 16-34.	3.5	118
33	Characteristics of the sticky spot of Kamb Ice Stream, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2017, 122, 641-653.	2.8	5
34	Poststagnation Retreat of Kamb Ice Stream's Grounding Zone. Geophysical Research Letters, 2017, 44, 9815-9822.	4.0	8
35	Decoding ice sheet behavior using englacial layer slopes. Geophysical Research Letters, 2017, 44, 5561-5570.	4.0	24
36	A Viscoelastic Model of Ice Stream Flow with Application to Stick-Slip Motion. Frontiers in Earth Science, 2016, 4, .	1.8	6

#	Article	IF	CITATIONS
37	How high will the seas rise?. Science, 2016, 354, 1375-1377.	12.6	59
38	Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14249-14254.	7.1	105
39	Greenland was nearly ice-free for extended periods during the Pleistocene. Nature, 2016, 540, 252-255.	27.8	95
40	Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from iceâ€penetrating radar. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1954-1983.	2.8	50
41	Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979–2014. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,433.	3.3	29
42	A heated mirror for future climate. Science, 2016, 352, 151-152.	12.6	13
43	Enhancement of volcanism and geothermal heat flux by iceâ€age cycling: A stress modeling study of Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1456-1471.	2.8	12
44	The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss. Journal of Climate, 2016, 29, 7831-7849.	3.2	65
45	Mechanical and hydrologic properties of Whillans Ice Stream till: Implications for basal strength and stickâ€slip failure. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1295-1309.	2.8	17
46	Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 2016, 43, 10,817.	4.0	69
47	Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 2016, 31, 416-433.	3.0	12
48	Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 2016, 440, 12-19.	4.4	35
49	Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2558-2574.	3.3	39
50	Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annual Review of Earth and Planetary Sciences, 2015, 43, 207-231.	11.0	83
51	Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 2015, 412, 112-121.	4.4	362
52	Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale. Climate Dynamics, 2015, 45, 2001-2011.	3.8	20
53	Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 2015, 61, 585-594.	2.2	15
54	Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 2014, 8, 1275-1287.	3.9	56

#	Article	IF	CITATIONS
55	Physical properties of the WAIS Divide ice core. Journal of Glaciology, 2014, 60, 1181-1198.	2.2	41
56	Dilatant till facilitates ice-stream flow in northeast Greenland. Earth and Planetary Science Letters, 2014, 401, 57-69.	4.4	73
57	Seismic and geodetic evidence for groundingâ€line control of Whillans Ice Stream stickâ€slip events. Journal of Geophysical Research F: Earth Surface, 2014, 119, 333-348.	2.8	55
58	Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the northeast Greenland ice stream. Annals of Glaciology, 2014, 55, 127-137.	1.4	40
59	Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica. Journal of Glaciology, 2014, 60, 795-807.	2.2	81
60	Ice-shelf tidal flexure and subglacial pressure variations. Earth and Planetary Science Letters, 2013, 361, 422-428.	4.4	79
61	Accelerated subglacial erosion in response to stick-slip motion. Geology, 2013, 41, 159-162.	4.4	36
62	Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 2013, 7, 1185-1192.	3.9	80
63	Estuaries beneath ice sheets. Geology, 2013, 41, 1159-1162.	4.4	58
64	Subglacial bathymetry and sediment layer distribution beneath the Pine Island Glacier ice shelf, West Antarctica, modeled using aerogravity and autonomous underwater vehicle data. Annals of Glaciology, 2013, 54, 27-32.	1.4	22
65	Ice sheet grounding zone stabilization due to till compaction. Geophysical Research Letters, 2013, 40, 5406-5411.	4.0	40
66	Dynamic (in)stability of Thwaites Glacier, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2013, 118, 638-655.	2.8	88
67	Sediment deposition at the modern grounding zone of Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2013, 40, 3934-3939.	4.0	33
68	Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from groundâ€based gravity measurements. Journal of Geophysical Research: Solid Earth, 2013, 118, 4535-4546.	3.4	14
69	The effects of entrained debris on the basal sliding stability of a glacier. Journal of Geophysical Research F: Earth Surface, 2013, 118, 656-666.	2.8	47
70	Modeling Ice-Sheet Flow. Science, 2012, 336, 551-552.	12.6	39
71	Ice-Sheet Response to Oceanic Forcing. Science, 2012, 338, 1172-1176.	12.6	197
72	A viscoelastic flowline model applied to tidal forcing of Bindschadler Ice Stream, West Antarctica. Earth and Planetary Science Letters, 2012, 319-320, 128-132.	4.4	25

#	Article	IF	CITATIONS
73	Subglacial Lake Whillans — Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 201-209.	4.4	54
74	Subglacial Lake Whillans — Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 237-245.	4.4	66
75	Motion of an Antarctic glacier by repeated tidally modulated earthquakes. Nature Geoscience, 2012, 5, 623-626.	12.9	66
76	Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelâ€based analysis. Journal of Geophysical Research, 2012, 117, .	3.3	134
77	Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport drumlin field, New York State, USA. Boreas, 2012, 41, 31-41.	2.4	29
78	Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting. Journal of Geophysical Research, 2011, 116, .	3.3	41
79	K.M. Cuffey and W.S.B. Paterson. 2010. The physics of glaciers. Fourth edition. Amsterdam, etc., Academic Press. 704pp. ISBN-10: 0-123694-61-2, ISBN-13: 978-0-123-69461-4, hardback, Á£60.99/â,¬71.95/USS Journal of Glaciology, 2011, 57, 383-384.	59 2.2 5	10
80	Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates. Journal of Glaciology, 2011, 57, 629-638.	2.2	18
81	Englacial seismic reflectivity: imaging crystal-orientation fabric in West Antarctica. Journal of Glaciology, 2011, 57, 639-650.	2.2	42
82	Stability of the West Antarctic ice sheet in a warming world. Nature Geoscience, 2011, 4, 506-513.	12.9	261
83	Reliability of ice-core science: historical insights. Journal of Glaciology, 2010, 56, 1095-1103.	2.2	13
84	Effect of orbitalâ€ s cale climate cycling and meltwater drainage on ice sheet grounding line migration. Journal of Geophysical Research, 2010, 115, .	3.3	21
85	On the nature of the dirty ice at the bottom of the GISP2 ice core. Earth and Planetary Science Letters, 2010, 299, 466-473.	4.4	17
86	History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Science Reviews, 2010, 29, 1728-1756.	3.0	177
87	Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 2010, 29, 1679-1715.	3.0	226
88	Past rates of climate change in the Arctic. Quaternary Science Reviews, 2010, 29, 1716-1727.	3.0	23
89	Initial effects of oceanic warming on a coupled ocean–ice shelf–ice stream system. Earth and Planetary Science Letters, 2009, 287, 483-487.	4.4	22
90	Seismic observations of transient subglacial waterâ€flow beneath MacAyeal Ice Stream, West Antarctica. Geophysical Research Letters, 2009, 36, .	4.0	60

#	Article	IF	CITATIONS
91	Basal mechanics of ice streams: Insights from the stickâ \in slip motion of Whillans Ice Stream, West Antarctica. Journal of Geophysical Research, 2009, 114, .	3.3	110
92	Ice sheet mass balance and sea level. Antarctic Science, 2009, 21, 413-426.	0.9	78
93	Laboratory study of the frictional rheology of sheared till. Journal of Geophysical Research, 2008, 113, .	3.3	94
94	Iceâ€front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 2008, 113, .	3.3	147
95	A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quaternary Science Reviews, 2008, 27, 2273-2282.	3.0	112
96	Complex fabric development revealed by englacial seismic reflectivity: Jakobshavn Isbræ, Greenland. Geophysical Research Letters, 2008, 35, .	4.0	40
97	Effects of basalâ€melting distribution on the retreat of iceâ€shelf grounding lines. Geophysical Research Letters, 2008, 35, .	4.0	56
98	Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research, 2008, 113, .	3.3	202
99	A Simple Law for Ice-Shelf Calving. Science, 2008, 322, 1344-1344.	12.6	88
100	Understanding Glacier Flow in Changing Times. Science, 2008, 322, 1061-1062.	12.6	37
101	Effect of Sedimentation on Ice-Sheet Grounding-Line Stability. Science, 2007, 315, 1838-1841.	12.6	176
102	Extensive storage of basal meltwater in the onset region of a major West Antarctic ice stream. Geology, 2007, 35, 251.	4.4	57
103	Discovery of Till Deposition at the Grounding Line of Whillans Ice Stream. Science, 2007, 315, 1835-1838.	12.6	164
104	"C"ing Arctic Climate with Black Ice. Science, 2007, 317, 1333-1334.	12.6	2
105	Antarctic sea ice: a self-organizing map-based perspective. Annals of Glaciology, 2007, 46, 391-396.	1.4	13
106	Ice-sheet mass balance: assessment, attribution and prognosis. Annals of Glaciology, 2007, 46, 1-7.	1.4	49
107	Wally Was Right: Predictive Ability of the North Atlantic "Conveyor Belt―Hypothesis for Abrupt Climate Change. Annual Review of Earth and Planetary Sciences, 2007, 35, 241-272.	11.0	120
108	Role of small ice shelves in sea-level rise. Geophysical Research Letters, 2006, 33, .	4.0	31

#	Article	IF	CITATIONS
109	Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West Antarctica. Journal of Geophysical Research, 2006, 111, .	3.3	64
110	Outburst flooding and the initiation of ice-stream surges in response to climatic cooling: A hypothesis. Geomorphology, 2006, 75, 76-89.	2.6	68
111	Possible role for dust or other northern forcing of ice-age carbon dioxide changes. Quaternary Science Reviews, 2006, 25, 3198-3206.	3.0	5
112	Developing a bubble number-density paleoclimatic indicator for glacier ice. Journal of Glaciology, 2006, 52, 358-364.	2.2	42
113	Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise. Science, 2006, 311, 1747-1750.	12.6	400
114	Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Annals of Glaciology, 2005, 40, 8-14.	1.4	120
115	Ice sheets, global warming, and article 2 of the UNFCCC. Climatic Change, 2005, 68, 257-267.	3.6	55
116	Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica. Journal of Glaciology, 2005, 51, 307-312.	2.2	32
117	Ice-Sheet and Sea-Level Changes. Science, 2005, 310, 456-460.	12.6	463
118	The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 2005, 24, 1123-1149.	3.0	727
119	Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quaternary Science Reviews, 2005, 24, 1333-1343.	3.0	130
120	Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	352
121	Continued deceleration of Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	93
122	Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering. Journal of Glaciology, 2004, 50, 453-461.	2.2	90
123	The West Antarctic Ice Sheet and Long Term Climate Policy. Climatic Change, 2004, 64, 1-10.	3.6	84
124	Ice streams—fast, and faster?. Comptes Rendus Physique, 2004, 5, 723-734.	0.9	22
125	A 15-year West Antarctic climatology from six automatic weather station temperature and pressure records. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	19
126	Ice thickness and isostatic imbalances in the Ross Embayment, West Antarctica: model results. Global and Planetary Change, 2004, 42, 265-278.	3.5	32

#	Article	IF	CITATIONS
127	Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quaternary Science Reviews, 2004, 23, 1013-1027.	3.0	197
128	Stabilizing feedbacks in glacier-bed erosion. Nature, 2003, 424, 758-760.	27.8	150
129	Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophysical Research Letters, 2003, 30, .	4.0	136
130	Tidally Controlled Stick-Slip Discharge of a West Antarctic Ice. Science, 2003, 301, 1087-1089.	12.6	260
131	Abrupt Climate Change. Science, 2003, 299, 2005-2010.	12.6	1,017
132	Ice Core Records of Atmospheric N2O Covering the Last 106,000 Years. Science, 2003, 301, 945-948.	12.6	150
133	Bedload component of glacially discharged sediment: Insights from the Matanuska Glacier, Alaska. Geology, 2003, 31, 7.	4.4	31
134	lce-core insights into the flow and shut-down of Ice Stream C, West Antarctica. Annals of Glaciology, 2003, 37, 123-128.	1.4	9
135	Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Annals of Glaciology, 2003, 36, 251-256.	1.4	41
136	Sub-catchment melt and long-term stability of ice stream D, West Antarctica. Geophysical Research Letters, 2002, 29, 55-1-55-4.	4.0	30
137	A northern lead in the orbital band: north–south phasing of Ice-Age events. Quaternary Science Reviews, 2002, 21, 431-441.	3.0	97
138	Preliminary firn-densification model with 38-site dataset. Journal of Glaciology, 2001, 47, 671-676.	2.2	35
139	Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A Journal of Glaciology, 2001, 47, 412-422.	2.2	39
140	Ice-core evidence of abrupt climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1331-1334.	7.1	185
141	Continuity comes first: recent progress in understanding subglacial deformation. Geological Society Special Publication, 2000, 176, 171-179.	1.3	34
142	The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 2000, 19, 213-226.	3.0	752
143	Conditions for bubble elongation in cold ice-sheet ice. Journal of Glaciology, 1999, 45, 147-153.	2.2	18

144 Field evidence for the recognition of glaciohydrologic supercooling. , 1999, , .

15

#	Article	IF	CITATIONS
145	THE DEGLACIATION OF THE NORTHERN HEMISPHERE: A Global Perspective. Annual Review of Earth and Planetary Sciences, 1999, 27, 149-182.	11.0	275
146	Conditions for bubble elongation in cold ice-sheet ice. Journal of Glaciology, 1999, 45, 147-153.	2.2	9
147	Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 1998, 391, 65-68.	27.8	360
148	Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 1998, 391, 141-146.	27.8	639
149	Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature, 1998, 394, 62-65.	27.8	234
150	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory. Journal of Glaciology, 1998, 44, 563-569.	2.2	111
151	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I. Field evidence. Journal of Glaciology, 1998, 44, 547-562.	2.2	207
152	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory. Journal of Glaciology, 1998, 44, 563-569.	2.2	72
153	Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 1997, 25, 483.	4.4	1,577
154	Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland. Journal of Geophysical Research, 1997, 102, 15183-15196.	3.3	116
155	Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review. Journal of Geophysical Research, 1997, 102, 26559-26575.	3.3	165
156	Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research, 1997, 102, 26471-26487.	3.3	524
157	Stagnation of Ice Stream C, West Antarctica by water piracy. Geophysical Research Letters, 1997, 24, 265-268.	4.0	162
158	Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application. Journal of Geophysical Research, 1997, 102, 26367-26381.	3.3	203
159	How glaciers entrain and transport basal sediment: Physical constraints. Quaternary Science Reviews, 1997, 16, 1017-1038.	3.0	312
160	Is erosion by deforming subglacial sediments significant? (Toward till continuity). Annals of Glaciology, 1996, 22, 17-24.	1.4	64
161	Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion. Annals of Glaciology, 1996, 22, 126-133.	1.4	36
162	TOWARDS A HYDROLOGICAL MODEL FOR COMPUTERIZED ICE-SHEET SIMULATIONS. Hydrological Processes, 1996, 10, 649-660.	2.6	41

#	Article	IF	CITATIONS
163	Is erosion by deforming subglacial sediments significant? (Toward till continuity). Annals of Glaciology, 1996, 22, 17-24.	1.4	26
164	Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature, 1995, 373, 52-54.	27.8	210
165	Mapping c-axis fabrics to study physical processes in ice. Journal of Glaciology, 1995, 41, 197-203.	2.2	128
166	Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates. Journal of Glaciology, 1995, 41, 503-514.	2.2	83
167	Large Arctic Temperature Change at the Wisconsin-Holocene Clacial Transition. Science, 1995, 270, 455-458.	12.6	442
168	lce Stream C, Antarctica, sticky spots detected by microearthquake monitoring. Annals of Glaciology, 1994, 20, 183-186.	1.4	42
169	A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Annals of Glaciology, 1994, 20, 187-194.	1.4	20
170	Ice-rafted debris associated with binge/purge oscillations of the Laurentide Ice Sheet. Paleoceanography, 1994, 9, 503-511.	3.0	217
171	Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years. Science, 1994, 263, 1747-1751.	12.6	368
172	Calibration of the δ180 isotopic paleothermometer for central Greenland, using borehole temperatures. Journal of Glaciology, 1994, 40, 341-349.	2.2	117
173	A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Annals of Glaciology, 1994, 20, 187-194.	1.4	56
174	lce Stream C, Antarctica, sticky spots detected by microearthquake monitoring. Annals of Glaciology, 1994, 20, 183-186.	1.4	52
175	Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 1993, 362, 527-529.	27.8	1,149
176	In search of ice-stream sticky spots. Journal of Glaciology, 1993, 39, 447-454.	2.2	206
177	Flow-law hypotheses for ice-sheet modeling. Journal of Glaciology, 1992, 38, 245-256.	2.2	268
178	How can low-pressure channels and deforming tills coexist subglacially?. Journal of Glaciology, 1992, 38, 200-207.	2.2	55
179	Changes in the West Antarctic Ice Sheet. Science, 1991, 254, 959-963.	12.6	205
180	Deforming-bed origin for southern Laurentide till sheets?. Journal of Glaciology, 1991, 37, 67-76.	2.2	242

#	Article	IF	CITATIONS
181	Deforming-bed origin for southern Laurentide till sheets?. Journal of Glaciology, 1991, 37, 67-76.	2.2	151
182	Summertime formation of Depth Hoar in central Greenland. Geophysical Research Letters, 1990, 17, 2393-2396.	4.0	76
183	Sedimentation beneath ice shelves $\hat{a} \in \tilde{~}$ the view from ice stream B. Marine Geology, 1989, 85, 101-120.	2.1	310
184	Fabrics in Polar Ice Sheets: Development and Prediction. Science, 1988, 240, 493-495.	12.6	179
185	Concerning the Deposition and Diagenesis of Strata in Polar Firn. Journal of Glaciology, 1988, 34, 283-290.	2.2	110
186	Ice-Core Analysis on the Siple Coast of West Antarctica. Annals of Glaciology, 1988, 11, 1-7.	1.4	34
187	Ice-Core Analysis on the Siple Coast of West Antarctica. Annals of Glaciology, 1988, 11, 1-7.	1.4	109
188	Effect of Stratigraphy on Radar-Altimetry Data Collected Over Ice Sheets. Annals of Glaciology, 1988, 11, 60-63.	1.4	11
189	Concerning the Deposition and Diagenesis of Strata in Polar Firn. Journal of Glaciology, 1988, 34, 283-290.	2.2	22
190	Till beneath ice stream B: 1. Properties derived from seismic travel times. Journal of Geophysical Research, 1987, 92, 8903-8911.	3.3	243
191	Till beneath ice stream B: 2. Structure and continuity. Journal of Geophysical Research, 1987, 92, 8913-8920.	3.3	115
192	Till beneath ice stream B: 3. Till deformation: Evidence and implications. Journal of Geophysical Research, 1987, 92, 8921-8929.	3.3	352
193	Texture of Polar Firn for Remote Sensing. Annals of Claciology, 1987, 9, 1-4.	1.4	77
194	FIRN DENSIFICATION BY GRAIN-BOUNDARY SLIDING : A FIRST MODEL. Journal De Physique Colloque, 1987, 48, C1-249-C1-256.	0.2	43
195	Grain Growth in Polar Ice: I. Theory. Journal of Glaciology, 1986, 32, 415-424.	2.2	98
196	Three-Dimensional Coordination Number from Two-Dimensional Measurements: A New Method. Journal of Glaciology, 1986, 32, 391-396.	2.2	18
197	Grain Growth in Polar Ice: II. Application. Journal of Glaciology, 1986, 32, 425-433.	2.2	94
198	Grain Growth in Polar Ice: I. Theory. Journal of Glaciology, 1986, 32, 415-424.	2.2	64

#	Article	IF	CITATIONS
199	Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 1986, 322, 54-57.	27.8	391
200	Deformation of till beneath ice stream B, West Antarctica. Nature, 1986, 322, 57-59.	27.8	527
201	Three-Dimensional Coordination Number from Two-Dimensional Measurements: A New Method. Journal of Glaciology, 1986, 32, 391-396.	2.2	3
202	Grain Growth in Polar Ice: II. Application. Journal of Glaciology, 1986, 32, 425-433.	2.2	13
203	Rheology of Glacier Ice. Science, 1985, 227, 1335-1337.	12.6	56
204	Inland Ice-Sheet Thinning Near Dome C, East Antarctica, Caused by Post-Wisconsinan Sea-Level Rise (Abstract). Annals of Glaciology, 1984, 5, 199-200.	1.4	2
205	Inland Ice-Sheet Thinning Near Dome C, East Antarctica, Caused by Post-Wisconsinan Sea-Level Rise (Abstract). Annals of Glaciology, 1984, 5, 199-200.	1.4	1
206	Polar Firn Densification and Grain Growth. Annals of Glaciology, 1982, 3, 7-11.	1.4	58
207	Polar Firn Densification and Grain Growth. Annals of Glaciology, 1982, 3, 7-11.	1.4	28
208	Basal Zone of the West Antarctic Ice Streams and its Role in Lubrication of Their Rapid Motion. Antarctic Research Series, 0, , 157-199.	0.2	159