
Daniel Felsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8058231/publications.pdf Version: 2024-02-01

DANIEL FEISKY

#	Article	IF	CITATIONS
1	Self-reported mental health during the COVID-19 pandemic and its association with alcohol and cannabis use: a latent class analysis. BMC Psychiatry, 2022, 22, 306.	2.6	14
2	Multiscale neural signatures of major depressive, anxiety, and stress-related disorders. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
3	Polygenic Risk Score for Alzheimer's Disease in Caribbean Hispanics. Annals of Neurology, 2021, 90, 366-376.	5.3	15
4	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	8.1	75
5	Association of accelerometer-derived sleep measures with lifetime psychiatric diagnoses: A cross-sectional study of 89,205 participants from the UK Biobank. PLoS Medicine, 2021, 18, e1003782.	8.4	28
6	Machine Learning–Based Predictive Modeling of Anxiety and Depressive Symptoms During 8 Months of the COVID-19 Global Pandemic: Repeated Cross-sectional Survey Study. JMIR Mental Health, 2021, 8, e32876.	3.3	10
7	Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nature Communications, 2021, 12, 7035.	12.8	19
8	Proximal and distal effects of genetic susceptibility to multiple sclerosis on the T cell epigenome. Nature Communications, 2021, 12, 7078.	12.8	15
9	Genetics of Gene Expression in the Aging Human Brain Reveal TDP-43 Proteinopathy Pathophysiology. Neuron, 2020, 107, 496-508.e6.	8.1	29
10	Polygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury. Biological Psychiatry, 2019, 85, 408-416.	1.3	27
11	Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. American Journal of Human Genetics, 2019, 105, 562-572.	6.2	7
12	Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nature Communications, 2019, 10, 409.	12.8	121
13	BDNF-Dependent Effects on Amygdala–Cortical Circuitry and Depression Risk in Children and Youth. Cerebral Cortex, 2018, 28, 1760-1770.	2.9	19
14	Genetic influence of plasma homocysteine on Alzheimer's disease. Neurobiology of Aging, 2018, 62, 243.e7-243.e14.	3.1	18
15	P3â€136: MODULE QUANTITATIVE TRAIT LOCI ANALYSIS IMPLICATES <i>TMEM106B</i> AND <i>RBFOX1</i> AS KEY BRAIN TRANSCRIPTOME REGULATORS IN OLDER ADULTS. Alzheimer's and Dementia, 2018, 14, P1120.	0.8	0
16	A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research. Scientific Data, 2018, 5, 180142.	5.3	357
17	P1â€161: RARE, SYNONYMOUS VARIANTS IN <i>CDH23, SLC9A3R1, RHBDD2</i> AND <i>ITIH2</i> ARE ASSOCIATED WITH ALZHEIMER'S DISEASE IN MULTIPLEX CARIBBEAN HISPANIC FAMILIES. Alzheimer's and Dementia, 2018, 14, P339.	0.8	1
18	Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain. Molecular Neurodegeneration, 2018, 13, 38.	10.8	44

DANIEL FELSKY

#	Article	IF	CITATIONS
19	195. Fatty Acid Bioavailability and Membrane Dynamics are Associated With White Matter Integrity and Neurocognitive Performance During Development. Biological Psychiatry, 2018, 83, S78-S79.	1.3	0
20	Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer's disease. Molecular Psychiatry, 2017, 22, 287-295.	7.9	59
21	Genetic epistasis regulates amyloid deposition in resilient aging. Alzheimer's and Dementia, 2017, 13, 1107-1116.	0.8	8
22	ldentification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data. PLoS Medicine, 2017, 14, e1002287.	8.4	88
23	Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 819-830.	4.3	5
24	Amyloid deposition in semantic dementia: a positron emission tomography study. International Journal of Geriatric Psychiatry, 2016, 31, 1064-1074.	2.7	9
25	Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. International Journal of Neuropsychopharmacology, 2016, 19, pyv132.	2.1	50
26	Limited Evidence for Association of Genome-Wide Schizophrenia Risk Variants on Cortical Neuroimaging Phenotypes. Schizophrenia Bulletin, 2016, 42, 1027-1036.	4.3	11
27	Neuroimaging predictors of functional outcomes in schizophrenia at baseline and 6-month follow-up. Schizophrenia Research, 2015, 169, 69-75.	2.0	10
28	Investigation of <i>TSPO</i> variants in schizophrenia and antipsychotic treatment outcomes. Pharmacogenomics, 2015, 16, 5-22.	1.3	15
29	Superficial white matter as a novel substrate of age-related cognitive decline. Neurobiology of Aging, 2015, 36, 2094-2106.	3.1	65
30	Hippocampal (subfield) volume and shape in relation to cognitive performance across the adult lifespan. Human Brain Mapping, 2015, 36, 3020-3037.	3.6	101
31	Brain White Matter Development Is Associated with a Human-Specific Haplotype Increasing the Synthesis of Long Chain Fatty Acids. Journal of Neuroscience, 2014, 34, 6367-6376.	3.6	27
32	The SORL1 gene and convergent neural risk for Alzheimer's disease across the human lifespan. Molecular Psychiatry, 2014, 19, 1125-1132.	7.9	39
33	Alterations of Superficial White Matter in Schizophrenia and Relationship to Cognitive Performance. Neuropsychopharmacology, 2013, 38, 1954-1962.	5.4	113
34	Neuroimaging Evidence for the Deficit Subtype of Schizophrenia. JAMA Psychiatry, 2013, 70, 472.	11.0	137
35	The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Molecular Psychiatry, 2013, 18, 443-450.	7.9	110
36	Oligodendrocyte Genes, White Matter Tract Integrity, and Cognition in Schizophrenia. Cerebral Cortex, 2013, 23, 2044-2057.	2.9	69

DANIEL FELSKY

#	Article	IF	CITATIONS
37	APOE Ϊμ 4, Aging, and Effects on White Matter Across the Adult Life Span. JAMA Psychiatry, 2013, 70, 646.	11.0	10
38	White Matter Deficits in Psychopathic Offenders and Correlation with Factor Structure. PLoS ONE, 2013, 8, e72375.	2.5	46
39	Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: Replication and exploration. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 37, 62-75.	4.8	34
40	Myelin-Associated Glycoprotein Gene and Brain Morphometry in Schizophrenia. Frontiers in Psychiatry, 2012, 3, 40.	2.6	32
41	DISC1 and Striatal Volume: A Potential Risk Phenotype For mental Illness. Frontiers in Psychiatry, 2012, 3, 57.	2.6	13
42	The ZNF804A Gene: Characterization of a Novel Neural Risk Mechanism for the Major Psychoses. Neuropsychopharmacology, 2011, 36, 1871-1878.	5.4	58
43	The Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Prediction of Neural Risk for Alzheimer Disease. Archives of General Psychiatry, 2011, 68, 198.	12.3	117
44	Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	14