Liang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/805805/publications.pdf

Version: 2024-02-01

759233 752698 29 472 12 20 citations h-index g-index papers 31 31 31 418 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graph Convolutional Sparse Subspace Coclustering With Nonnegative Orthogonal Factorization for Large Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	5
2	LncRNA PMAT–PtoMYB46 module represses PtoMATE and PtoARF2 promoting Pb2+ uptake and plant growth in poplar. Journal of Hazardous Materials, 2022, 433, 128769.	12.4	12
3	Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in <i>Populus tomentosa</i> . Journal of Experimental Botany, 2021, 72, 576-591.	4.8	21
4	MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. Plant Cell, 2021, 33, 581-602.	6.6	22
5	Genetic Architecture Underlying the Metabolites of Chlorogenic Acid Biosynthesis in Populus tomentosa. International Journal of Molecular Sciences, 2021, 22, 2386.	4.1	7
6	Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in <i>Populus</i> Journal of Experimental Botany, 2021, 72, 5372-5389.	4.8	12
7	Genetic architecture of the metabolic pathway of salicylic acid biosynthesis in <i>Populus</i> . Tree Physiology, 2021, 41, 2198-2215.	3.1	13
8	Association Study and Mendelian Randomization Analysis Reveal Effects of the Genetic Interaction Between PtoMIR403b and PtoGT31B-1 on Wood Formation in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 704941.	3.6	2
9	Genetic Architecture and Genome-Wide Adaptive Signatures Underlying Stem Lenticel Traits in Populus tomentosa. International Journal of Molecular Sciences, 2021, 22, 9249.	4.1	3
10	Multi-omics analysis provides insights into genetic architecture of flavonoid metabolites in Populus. Industrial Crops and Products, 2021, 168, 113612.	5.2	7
11	Pyramiding superior haplotypes and epistatic alleles to accelerate wood quality and yield improvement in poplar breeding. Industrial Crops and Products, 2021, 171, 113891.	5.2	7
12	Genetic dissection of the gene coexpression network underlying photosynthesis in <i>Populus</i> Plant Biotechnology Journal, 2020, 18, 1015-1026.	8.3	21
13	Linkageâ€linkage disequilibrium dissection of the epigenetic quantitative trait loci (epiQTLs) underlying growth and wood properties in <i>Populus</i> New Phytologist, 2020, 225, 1218-1233.	7.3	25
14	Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Molecular Genetics and Genomics, 2020, 295, 855-870.	2.1	2
15	Genetic architecture underlying the lignin biosynthesis pathway involves noncoding <scp>RNA</scp> s and transcription factors for growth and wood properties in <i>Populus</i> . Plant Biotechnology Journal, 2019, 17, 302-315.	8.3	54
16	Timeâ€specific and pleiotropic quantitative trait loci coordinately modulate stem growth in <i>Populus</i> . Plant Biotechnology Journal, 2019, 17, 608-624.	8.3	34
17	New Discovery of <i>Neocalamites</i> from the Upper Triassic Daheba Formation in West Qinling, Northwest China. Acta Geologica Sinica, 2019, 93, 756-757.	1.4	2
18	Transcription factors involved in the regulatory networks governing the Calvin–Benson–Bassham cycle. Tree Physiology, 2019, 39, 1159-1172.	3.1	3

#	Article	IF	Citations
19	Conserved noncoding sequences conserve biological networks and influence genome evolution. Heredity, 2018, 120, 437-451.	2.6	13
20	Method of Predicting Tight Gas Deliverability from Conventional Well Logging Data Based on Experimental Simulation. Arabian Journal for Science and Engineering, 2018, 43, 2615-2623.	3.0	2
21	Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. Frontiers in Plant Science, 2018, 9, 1912.	3.6	34
22	Association Genetics in Populus Reveal the Allelic Interactions of Pto-MIR167a and Its Targets in Wood Formation. Frontiers in Plant Science, 2018, 9, 744.	3.6	14
23	Allelic Interactions among Pto-MIR475b and Its Four Target Genes Potentially Affect Growth and Wood Properties in Populus. Frontiers in Plant Science, 2017, 8, 1055.	3.6	9
24	Comparative study of models for predicting permeability from nuclear magnetic resonance (NMR) logs in two Chinese tight sandstone reservoirs. Acta Geophysica, 2014, 62, 116-141.	2.0	40
25	Estimation of Saturation Exponent from Nuclear Magnetic Resonance (NMR) Logs in Low Permeability Reservoirs. Applied Magnetic Resonance, 2013, 44, 333-347.	1.2	13
26	Estimation of Permeability by Integrating Nuclear Magnetic Resonance (NMR) Logs with Mercury Injection Capillary Pressure (MICP) Data in Tight Gas Sands. Applied Magnetic Resonance, 2013, 44, 449-468.	1.2	73
27	The direct repeat sequence upstream of Bacillus chitinase genes is cis-acting elements that negatively regulate heterologous expression in E. coli. Enzyme and Microbial Technology, 2012, 50, 280-286.	3.2	5
28	Calculation of porosity from nuclear magnetic resonance and conventional logs in gas-bearing reservoirs. Acta Geophysica, 2012, 60, 1030-1042.	2.0	15
29	Study and Optimize the Process of Batch Small Files Replication. , 2008, , .		0