David J Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8057441/publications.pdf Version: 2024-02-01

		430442	433756
32	2,505	18	31
papers	citations	h-index	g-index
32	32	32	3963
all docs	docs citations	times ranked	citing authors

DAVID I CORDON

#	Article	IF	CITATIONS
1	Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neuro-Oncology Advances, 2022, 4, vdac047.	0.4	3
2	Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood, 2022, 139, 3752-3770.	0.6	12
3	Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma. Oncogene, 2022, 41, 2873-2884.	2.6	2
4	The translational repressor 4E-BP1 regulates RRM2 levels and functions as a tumor suppressor in Ewing sarcoma tumors. Oncogene, 2021, 40, 564-577.	2.6	13
5	Combination therapies for MPNSTs targeting RABL6A-RB1 signaling. Oncotarget, 2021, 12, 10-14.	0.8	5
6	Preclinical efficacy of prexasertib in acute lymphoblastic leukemia. British Journal of Haematology, 2021, 194, 1094-1098.	1.2	1
7	Inhibition of the ATR–CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Molecular Cancer Research, 2020, 18, 91-104.	1.5	43
8	Eltrombopag inhibits the proliferation of Ewing sarcoma cells via iron chelation and impaired DNA replication. BMC Cancer, 2020, 20, 1171.	1.1	7
9	CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. International Journal of Molecular Sciences, 2020, 21, 3018.	1.8	30
10	Pharmacologic Ascorbate Primes Pancreatic Cancer Cells for Death by Rewiring Cellular Energetics and Inducing DNA Damage. Molecular Cancer Research, 2019, 17, 2102-2114.	1.5	21
11	SN-38 Conjugated Gold Nanoparticles Activated by Ewing Sarcoma Specific mRNAs Exhibit <i>In Vitro</i> and <i>In Vivo</i> Efficacy. Bioconjugate Chemistry, 2018, 29, 1111-1118.	1.8	16
12	mTORC1/2 and Protein Translation Regulate Levels of CHK1 and the Sensitivity to CHK1 Inhibitors in Ewing Sarcoma Cells. Molecular Cancer Therapeutics, 2018, 17, 2676-2688.	1.9	27
13	Development of Secondary Acute Myeloid Leukemia in a Pediatric Patient Concurrently Receiving Primary Therapy for Ewing Sarcoma. Journal of Pediatric Hematology/Oncology, 2017, 39, e370-e372.	0.3	4
14	Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine. Oncotarget, 2017, 8, 87016-87032.	0.8	23
15	Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells. Oncogene, 2016, 35, 3092-3102.	2.6	20
16	Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget, 2016, 7, 63003-63019.	0.8	31
17	Drug conjugated nanoparticles activated by cancer cell specific mRNA. Oncotarget, 2016, 7, 38243-38256.	0.8	17
18	Aurea Mediocritas: The Importance of a Balanced Genome. Cold Spring Harbor Perspectives in Biology, 2014, 6, a015842-a015842.	2.3	19

DAVID J GORDON

#	Article	IF	CITATIONS
19	Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 2012, 13, 189-203.	7.7	700
20	A pediatric case series of acute hemolysis after administration of intravenous immunoglobulin. American Journal of Hematology, 2009, 84, 771-772.	2.0	24
21	Peptideâ€Based Inhibitors of Amyloid Assembly. Methods in Enzymology, 2006, 413, 273-312.	0.4	126
22	Spatial Separation of β-Sheet Domains of β-Amyloid: Disruption of Each β-Sheet byN-Methyl Amino Acidsâ€. Biochemistry, 2006, 45, 9485-9495.	1.2	42
23	Aβ40-Lactam(D23/K28) Models a Conformation Highly Favorable for Nucleation of Amyloid. Biochemistry, 2005, 44, 6003-6014.	1.2	241
24	Increasing the Amphiphilicity of an Amyloidogenic Peptide Changes the β-Sheet Structure in the Fibrils from Antiparallel to Parallel. Biophysical Journal, 2004, 86, 428-434.	0.2	119
25	Probing the Role of Backbone Hydrogen Bonding in β-Amyloid Fibrils with Inhibitor Peptides Containing Ester Bonds at Alternate Positions. Biochemistry, 2003, 42, 475-485.	1.2	108
26	Structure of Spin-Labeled Methylmethanethiolsulfonate in Solution and Bound to TEM-1 β-Lactamase Determined by Electron Nuclear Double Resonance Spectroscopyâ€. Biochemistry, 2002, 41, 797-808.	1.2	7
27	Gas-Phase Photochemistry of the Photoactive Yellow Protein Chromophoretrans-p-Coumaric Acid. Journal of the American Chemical Society, 2002, 124, 6194-6201.	6.6	71
28	Supramolecular Structure in Full-Length Alzheimer's β-Amyloid Fibrils: Evidence for a Parallel β-Sheet Organization from Solid-State Nuclear Magnetic Resonance. Biophysical Journal, 2002, 83, 1205-1216.	0.2	309
29	Inhibition of β-Amyloid(40) Fibrillogenesis and Disassembly of β-Amyloid(40) Fibrils by Short β-Amyloid Congeners ContainingN-Methyl Amino Acids at Alternate Residuesâ€. Biochemistry, 2001, 40, 8237-8245.	1.2	257
30	pH dependent self assembly of β-amyloid(10-35) and β-amyloid(10-35)-PEG3000. Journal of Applied Crystallography, 2000, 33, 535-539.	1.9	43
31	Familial British Dementia: Expression and Metabolism of BRI. Annals of the New York Academy of Sciences, 2000, 920, 93-99.	1.8	18
32	Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nature Neuroscience, 1999, 2, 984-988.	7.1	146