
Luigi Picariello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8056338/publications.pdf Version: 2024-02-01

LUICI PICARIFUO

#	Article	IF	CITATIONS
1	How the Management of pH during Winemaking Affects Acetaldehyde, Polymeric Pigments and Color Evolution of Red Wine. Applied Sciences (Switzerland), 2022, 12, 2555.	2.5	5
2	Aging Behavior of Two Red Wines from the PIWI Pathogen-Resistant Grapevines ″Cabernet Eidos″ and ″Merlot Khorus″. ACS Food Science & Technology, 2022, 2, 638-646.	2.7	3
3	Comparison of Three Accelerated Oxidation Tests Applied to Red Wines with Different Chemical Composition. Molecules, 2021, 26, 815.	3.8	6
4	Phenolic Profiles of Red Wine Relate to Vascular Endothelial Benefits Mediated by SIRT1 and SIRT6. International Journal of Molecular Sciences, 2021, 22, 5677.	4.1	6
5	The Management of Dissolved Oxygen by a Polypropylene Hollow Fiber Membrane Contactor Affects Wine Aging. Molecules, 2021, 26, 3593.	3.8	1
6	Effect of oxidation on color parameters, tannins, and sensory characteristics of Sangiovese wines. European Food Research and Technology, 2021, 247, 2977-2991.	3.3	10
7	How acetaldehyde reacts with low molecular weight phenolics in white and red wines. European Food Research and Technology, 2021, 247, 2935-2944.	3.3	6
8	Effect of Chitosan on the Removal of Different Types of Tannins from Red Wines. Applied Sciences (Switzerland), 2021, 11, 11743.	2.5	1
9	Effect of Different Enological Tannins on Oxygen Consumption, Phenolic Compounds, Color and Astringency Evolution of Aglianico Wine. Molecules, 2020, 25, 4607.	3.8	8
10	Oxygen and SO ₂ Consumption of Different Enological Tannins in Relationship to Their Chemical and Electrochemical Characteristics. Journal of Agricultural and Food Chemistry, 2020, 68, 13418-13425.	5.2	11
11	Effectiveness of chitosanÂas an alternative to sulfites in red wine production. European Food Research and Technology, 2020, 246, 1795-1804.	3.3	13
12	New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 2020, 57, 2602-2611.	2.8	15
13	New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde. European Food Research and Technology, 2020, 246, 733-743.	3.3	15
14	Fermentative and postâ€fermentative oxygenation of Corvina red wine: influence on phenolic and volatile composition, colour and wine oxidative response. Journal of the Science of Food and Agriculture, 2020, 100, 2522-2533.	3.5	19
15	How must pH affects the level of red wine phenols. LWT - Food Science and Technology, 2020, 129, 109546.	5.2	25
16	Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines. Oeno One, 2020, 54, 623-636.	1.4	13
17	Cabernet Sauvignon Aging Stability Altered by Microoxygenation. American Journal of Enology and Viticulture, 2019, 70, 323-331.	1.7	10
18	Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine. International Journal of Food Science and Technology, 2018, 53, 228-236.	2.7	27

Luigi Picariello

#	Article	IF	CITATIONS
19	Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Frontiers in Chemistry, 2018, 6, 63.	3.6	35
20	Evaluation of the use of sulfur dioxide and glutathione to prevent oxidative degradation of malvidin-3-monoglucoside by hydrogen peroxide in the model solution and real wine. Food Research International, 2017, 99, 454-460.	6.2	6
21	Evolution of pigments, tannins and acetaldehyde during forced oxidation of red wine: Effect of tannins addition. LWT - Food Science and Technology, 2017, 77, 370-375.	5.2	47