Fabio L M Ricciardolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055496/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alveolar Nitric Oxide and Peripheral Oxygen Saturation in Frequent Exacerbators with Asthma: A Pilot Study. International Archives of Allergy and Immunology, 2022, 183, 105-115.	0.9	1
2	Pathology of Asthma. , 2022, , 296-307.		0
3	Biomarkers in Asthma. , 2022, , 342-351.		1
4	Which Therapy for Non-Type(T)2/T2-Low Asthma. Journal of Personalized Medicine, 2022, 12, 10.	1.1	15
5	Predictors of Low and High Exhaled Nitric Oxide Values in Asthma: A Real-World Study. Respiration, 2022, 101, 746-756.	1.2	5
6	Correlation of matrixâ€related airway remodeling and bradykinin B1 receptor expression with fixed airflow obstruction in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1886-1890.	2.7	6
7	Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Science Translational Medicine, 2021, 13, .	5.8	27
8	The Role of Dupilumab in Severe Asthma. Biomedicines, 2021, 9, 1096.	1.4	16
9	Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Annals of Medicine, 2021, 53, 135-150.	1.5	30
10	Nitric oxide's physiologic effects and potential as a therapeutic agent against COVID-19. Journal of Breath Research, 2021, 15, 014001.	1.5	22
11	Expression/Activation of PAR-1 in Airway Epithelial Cells of COPD Patients: Ex Vivo/In Vitro Study. International Journal of Molecular Sciences, 2021, 22, 10703.	1.8	0
12	Asthma phenotypes and endotypes. Minerva Medica, 2021, 112, 547-563.	0.3	14
13	Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines, 2021, 9, 1684.	1.4	33
14	A microRNA-21–mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Science Translational Medicine, 2021, 13, eaav7223.	5.8	54
15	Muscarinic receptor M3 contributes to vascular and neural growth factor upâ€regulation in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 717-720.	2.7	5
16	Oral CorticoSteroid sparing with biologics in severe asthma: A remark of the Severe Asthma Network in Italy (SANI). World Allergy Organization Journal, 2020, 13, 100464.	1.6	30
17	Clinical Characterization of the Frequent Exacerbator Phenotype in Asthma. Journal of Clinical Medicine, 2020, 9, 2226.	1.0	8
18	Extracorporeal Shock Waves Increase Markers of Cellular Proliferation in Bronchial Epithelium and in Primary Bronchial Fibroblasts of COPD Patients. Canadian Respiratory Journal, 2020, 2020, 1-14.	0.8	0

#	Article	IF	CITATIONS
19	MicroRNAs as Biomarkers in Corticosteroid-Resistant/Neutrophilic Asthma: Still a Long Way to Go!. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 4-6.	2.5	5
20	Evaluation of Innate Immune Mediators Related to Respiratory Viruses in the Lung of Stable COPD Patients. Journal of Clinical Medicine, 2020, 9, 1807.	1.0	5
21	The influence of smoking on asthma in the real-life. Respiratory Medicine, 2020, 170, 106066.	1.3	13
22	High levels of plasma fibrinogen could predict frequent asthma exacerbations. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2392-2395.e7.	2.0	11
23	Asthma in the Real-World: The Relevance of Gender. International Archives of Allergy and Immunology, 2020, 181, 462-466.	0.9	10
24	ERS International Congress, Madrid, 2019: highlights from the Airway Diseases, Asthma and COPD Assembly. ERJ Open Research, 2020, 6, 00341-2019.	1.1	3
25	A real-world assessment of asthma with chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2020, 125, 65-71.	0.5	16
26	Chronic rhinosinusitis with nasal polyps impact in severe asthma patients: Evidences from the Severe Asthma Network Italy (SANI) registry. Respiratory Medicine, 2020, 166, 105947.	1.3	55
27	Oxidative and Nitrosative Stress in the Pathogenesis of Obstructive Lung Diseases of Increasing Severity. Current Medicinal Chemistry, 2020, 27, 7149-7158.	1.2	10
28	Pragmatic Markers in the Management of Asthma: A Real-World-Based Approach. Children, 2020, 7, 48.	0.6	3
29	<p>Bacterial load and inflammatory response in sputum of alpha-1 antitrypsin deficiency patients with COPD</p> . International Journal of COPD, 2019, Volume 14, 1879-1893.	0.9	11
30	Cigarette smoke affects the onco-suppressor DAB2IP expression in bronchial epithelial cells of COPD patients. Scientific Reports, 2019, 9, 15682.	1.6	13
31	Association between exhaled nitric oxide and nasal polyposis in severe asthma. Respiratory Medicine, 2019, 152, 20-24.	1.3	12
32	Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. European Respiratory Journal, 2019, 54, 1900068.	3.1	62
33	Indexes of Angiogenic Activation in Myocardial Samples of Patients with Advanced Chronic Heart Failure. Medicina (Lithuania), 2019, 55, 766.	0.8	Ο
34	Clustering analysis in asthmatic outpatients: An experience in clinical practice. Journal of Asthma, 2019, 56, 475-477.	0.9	2
35	Vitamin D negatively correlates with blood eosinophilia in stable adult asthmatics. , 2019, , .		1
36	The impact of aging on outpatients with asthma in a real-world setting. Respiratory Medicine, 2018, 136, 58-64.	1.3	10

#	Article	IF	CITATIONS
37	TGF-Î ² Signaling Pathways in Different Compartments of the Lower Airways of Patients With Stable COPD. Chest, 2018, 153, 851-862.	0.4	43
38	Bradykinin in asthma: Modulation of airway inflammation and remodelling. European Journal of Pharmacology, 2018, 827, 181-188.	1.7	47
39	Cigarette smoke and nonâ€neuronal cholinergic system in the airway epithelium of COPD patients. Journal of Cellular Physiology, 2018, 233, 5856-5868.	2.0	13
40	<i>miR-142-3p</i> is associated with aberrant WNT signaling during airway remodeling in asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L328-L333.	1.3	37
41	Role of blood neutrophilia as a biomarker in asthma. , 2018, , .		1
42	Real-life experience of Omalizumab in adult Cystic Fibrosis patients with allergic severe asthma and Allergic Bronchopulmonary Aspergillosis. , 2018, , .		0
43	Airway closure during metacholine challenge is correlated to body mass index. , 2018, , .		О
44	Cholinergic muscarinic receptors and airway remodelling in severe asthma. , 2018, , .		0
45	Asthma control test in real life. Journal of Asthma, 2017, 54, 114-115.	0.9	1
46	A European Respiratory Society technical standard: exhaled biomarkers in lung disease. European Respiratory Journal, 2017, 49, 1600965.	3.1	432
47	Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. European Respiratory Journal, 2017, 49, 1602006.	3.1	63
48	Fractional Exhaled Nitric Oxide: A Potential Biomarker in Allergic Rhinitis?. International Archives of Allergy and Immunology, 2017, 172, 99-105.	0.9	24
49	Inflammatory biomarkers for asthma endotyping and consequent personalized therapy. Expert Review of Clinical Immunology, 2017, 13, 715-721.	1.3	37
50	Identification of IL-17F/frequent exacerbator endotype in asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 395-406.	1.5	118
51	Increased levels of alveolar and airway exhaled nitric oxide in runners. Upsala Journal of Medical Sciences, 2017, 122, 85-91.	0.4	8
52	Perspectives on exhaled nitric oxide. Journal of Breath Research, 2017, 11, 047104.	1.5	20
53	Uncontrolled asthma: A real-life experience. Allergy and Asthma Proceedings, 2017, 38, 1-2.	1.0	1
54	Late Breaking Abstract - Role of Muscarinic M3 receptors in bronchial remodelling of severe asthma. ,		0

2017,,.

#	Article	IF	CITATIONS
55	The asthma control in daily practice. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 907-909.	2.7	2
56	A real-life comparison of the Asthma Control Test and Global Initiative for Asthma asthma control grading. Annals of Allergy, Asthma and Immunology, 2016, 117, 725-727.	0.5	7
57	Association of FEF25-75% Impairment with Bronchial Hyperresponsiveness and Airway Inflammation in Subjects with Asthma-Like Symptoms. Respiration, 2016, 91, 206-214.	1.2	31
58	Asthma inflammatory phenotypes show differential microRNA expression in sputum. Journal of Allergy and Clinical Immunology, 2016, 137, 1433-1446.	1.5	168
59	Bradykinin B2 receptor expression in the bronchial mucosa of allergic asthmatics: the role of <scp>NF</scp> â€ <scp>kB</scp> . Clinical and Experimental Allergy, 2016, 46, 428-438.	1.4	13
60	Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L95-L102.	1.3	5
61	Exhaled nitric oxide in relation to asthma control: A real-life survey. Allergologia Et Immunopathologia, 2016, 44, 197-205.	1.0	14
62	Platelet activation and cardiovascular comorbidities in patients with chronic obstructive pulmonary disease. Current Medical Research and Opinion, 2016, 32, 885-891.	0.9	17
63	Perception of Asthma Symptoms as Assessed on the Visual Analog Scale in Subjects With Asthma: A Real-Life Study. Respiratory Care, 2016, 61, 23-29.	0.8	22
64	Perception of Bronchodilation Assessed by Visual Analog Scale in Asthmatics: A Real-life Study. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 48-72.	0.6	2
65	Expression of nasal and bronchial IL-17F and related cytokines in frequent exacerbators with neutrophilic severe asthma. , 2016, , .		0
66	TLR4 and NOD1 increase in stable COPD of increasing severity. Relationship with tissutal bacterial load. , 2016, , .		0
67	FeNO as biomarker for asthma phenotyping and management. Allergy and Asthma Proceedings, 2015, 36, 88-88.	1.0	43
68	Th17 polarization and upper airways: new insights. Clinical and Experimental Allergy, 2015, 45, 1873-1874.	1.4	1
69	Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages. PLoS ONE, 2015, 10, e0136455.	1.1	81
70	Eosinophilic inflammation of chronic rhinosinusitis with nasal polyps is related to OX40 ligand expression. Innate Immunity, 2015, 21, 167-174.	1.1	15
71	Therapeutic novelties of inhaled corticosteroids and bronchodilators in asthma. Pulmonary Pharmacology and Therapeutics, 2015, 33, 1-10.	1.1	14
72	Occupational asthma contribution in phenotyping adult asthma by using age-of-asthma onset clustering. Expert Review of Respiratory Medicine, 2015, 9, 387-388.	1.0	1

#	Article	IF	CITATIONS
73	Effect of Ambroxol and Beclomethasone on Lipopolysaccharide-Induced Nitrosative Stress in Bronchial Epithelial Cells. Respiration, 2015, 89, 572-582.	1.2	11
74	The relevance of obesity on asthma control in identical twins. Allergology International, 2015, 64, 104-105.	1.4	0
75	Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 236-240.	2.7	52
76	Cigarette smoke affects IL-17A, IL-17F and IL-17 receptor expression in the lung tissue: Ex vivo and in vitro studies. Cytokine, 2015, 76, 391-402.	1.4	39
77	A pathophysiological approach for FeNO: A biomarker for asthma. Allergologia Et Immunopathologia, 2015, 43, 609-616.	1.0	19
78	Phospho-p38 MAPK Expression in COPD Patients and Asthmatics and in Challenged Bronchial Epithelium. Respiration, 2015, 89, 329-342.	1.2	20
79	Symptom perception and asthma control. Postgraduate Medicine, 2015, 127, 738-743.	0.9	8
80	The impact of anxiety and depression on outpatients with asthma. Annals of Allergy, Asthma and Immunology, 2015, 115, 408-414.	0.5	138
81	The Combined Impact of Exhaled Nitric Oxide and Sputum Eosinophils Monitoring in Asthma Treatment: A Prospective Cohort Study. Current Pharmaceutical Design, 2015, 21, 4752-4762.	0.9	18
82	Pro-and anti-fibrotic molecule balance in the bronchial mucosa of stable COPD patients. , 2015, , .		0
83	Laryngeal Spasm Mimicking Asthma and Vitamin D Deficiency. Allergy, Asthma and Immunology Research, 2014, 6, 267.	1.1	3
84	Fibrosis markers and CRIM1 increase in chronic heart failure of increasing severity. Biomarkers, 2014, 19, 214-221.	0.9	5
85	Revisiting the role of exhaled nitric oxide in asthma. Current Opinion in Pulmonary Medicine, 2014, 20, 53-59.	1.2	47
86	Exhaled Nitric Oxide as a Biomarker in COPD and Related Comorbidities. BioMed Research International, 2014, 2014, 1-7.	0.9	78
87	Fluticasone propionate/formoterol: A fixed-combination therapy with flexible dosage. European Journal of Internal Medicine, 2014, 25, 695-700.	1.0	7
88	Overweight and obesity as risk factors for impaired lung function in patients with asthma: A real-life experience. Allergy and Asthma Proceedings, 2014, 35, 62-71.	1.0	22
89	Allergic Rhinitis Phenotypes Based on Bronchial Hyperreactivity to Methacholine. American Journal of Rhinology and Allergy, 2014, 28, e214-e218.	1.0	13
90	FEF25-75: A marker for small airways and asthma control. Annals of Allergy, Asthma and Immunology, 2013, 111, 233.	0.5	10

#	Article	IF	CITATIONS
91	A 10-year survey on asthma exacerbations: Relationships among emergency medicine calls, pollens, weather, and air pollution. Revue Francaise D'allergologie, 2013, 53, 569-575.	0.1	11
92	Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax, 2013, 68, 803-811.	2.7	29
93	Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2188-2193.	1.1	10
94	Bradykinin-induced asthmatic fibroblast/myofibroblast activities via bradykinin B2 receptor and different MAPK pathways. European Journal of Pharmacology, 2013, 710, 100-109.	1.7	26
95	Clinical–Biological Phenotyping beyond Inflammation in Asthma Delivers. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 117-118.	2.5	6
96	Nasal nitric oxide is a marker of poor asthma control. Journal of Breath Research, 2013, 7, 026009.	1.5	19
97	Exhaled Nitric Oxide May Predict Bronchial Hyperreactivity in Patients with Allergic Rhinitis. International Archives of Allergy and Immunology, 2013, 160, 322-328.	0.9	25
98	TNF-α, IL-4Rα AND IL-4 Polymorphisms in Mild to Severe Asthma from Italian Caucasians. International Journal of Immunopathology and Pharmacology, 2013, 26, 75-84.	1.0	14
99	Increased Body Mass Index and Bronchial Impairment in Allergic Rhinitis. American Journal of Rhinology and Allergy, 2013, 27, e195-e201.	1.0	17
100	Th17 Immunity in Children with Allergic Asthma and Rhinitis: A Pharmacological Approach. PLoS ONE, 2013, 8, e58892.	1.1	38
101	Pharmacological Modulation of the Bradykinin-Induced Differentiation of Human Lung Fibroblasts: Effects of Budesonide and Formoterol. Journal of Asthma, 2012, 49, 1004-1011.	0.9	7
102	Long-Term Adjustment of Stable Asthma Treatment with Fractional Exhaled Nitric Oxide and Sputum Eosinophils. European Journal of Inflammation, 2012, 10, 383-392.	0.2	4
103	Exhaled Nitric Oxide is Related to Bronchial Eosinophilia and Airway Hyperresponsiveness to Bradykinin in Allergen-Induced Asthma Exacerbation. International Journal of Immunopathology and Pharmacology, 2012, 25, 175-182.	1.0	17
104	Effect of iron supplementation in women with chronic cough and iron deficiency. International Journal of Clinical Practice, 2012, 66, 1095-1100.	0.8	26
105	Bradykinin- and lipopolysaccharide-induced bradykinin B2 receptor expression, interleukin 8 release and "nitrosative stress―in bronchial epithelial cells BEAS-2B: Role for neutrophils. European Journal of Pharmacology, 2012, 694, 30-38.	1.7	11
106	Review of exhaled nitric oxide in chronic obstructive pulmonary disease. Journal of Breath Research, 2012, 6, 047101.	1.5	21
107	Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis. PLoS ONE, 2011, 6, e28200.	1.1	55
108	Mechanisms of bradykinin-induced contraction in human fetal lung fibroblasts. European Respiratory Journal, 2010, 36, 655-664.	3.1	15

#	Article	IF	CITATIONS
109	Determinants of Exhaled Nitric Oxide Levels (FeNO) in Childhood Atopic Asthma: Evidence for Neonatal Respiratory Distress as a Factor Associated With Low FeNO Levels. Journal of Asthma, 2010, 47, 810-816.	0.9	12
110	Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax, 2009, 64, 968-975.	2.7	79
111	Serum interleukinâ€17 levels are related to clinical severity in allergic rhinitis. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1375-1378.	2.7	116
112	Increased nitrotyrosine plasma levels in relation to systemic markers of inflammation and myeloperoxidase in chronic heart failure. International Journal of Cardiology, 2009, 135, 386-390.	0.8	37
113	The Guinea Pig as an Animal Model for Asthma. Current Drug Targets, 2008, 9, 452-465.	1.0	62
114	The treatment of asthma in children: Inhaled corticosteroids. Pulmonary Pharmacology and Therapeutics, 2007, 20, 473-482.	1.1	11
115	Validated safety predictions of airway responses to house dust mite in asthma. Clinical and Experimental Allergy, 2007, 37, 100-107.	1.4	17
116	High serum levels of tumour necrosis factor-? and interleukin-8 in severe asthma: markers of systemic inflammation?. Clinical and Experimental Allergy, 2006, 36, 1373-1381.	1.4	127
117	Reactive nitrogen species in the respiratory tract. European Journal of Pharmacology, 2006, 533, 240-252.	1.7	198
118	Nitric Oxide Synthase (NOS) as Therapeutic Target for Asthma and Chronic Obstructive Pulmonary Disease. Current Drug Targets, 2006, 7, 721-735.	1.0	74
119	Neutrophilic inflammation and IL-8 levels in induced sputum of alpha-1-antitrypsin PiMZ subjects. Thorax, 2006, 61, 129-133.	2.7	70
120	The therapeutic potential of drugs targeting the arginase pathway in asthma. Expert Opinion on Investigational Drugs, 2005, 14, 1221-1231.	1.9	37
121	Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge. Journal of Allergy and Clinical Immunology, 2005, 115, 779-785.	1.5	92
122	Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2005, 116, 1028-1035.	1.5	127
123	Corticosteroid Resistance in Smokers with Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1252-1253.	2.5	10
124	Nitric Oxide in Health and Disease of the Respiratory System. Physiological Reviews, 2004, 84, 731-765.	13.1	749
125	Cellular and molecular mechanisms in chronic obstructive pulmonary disease: an overview. Clinical and Experimental Allergy, 2004, 34, 1156-1167.	1.4	166
126	Acid stress in the pathology of asthma. Journal of Allergy and Clinical Immunology, 2004, 113, 610-619.	1.5	191

#	Article	IF	CITATIONS
127	The "gianic faces―of nitric oxide in asthma: role for the inducible and the constitutive nitric oxide synthase isoforms. Journal of Allergy and Clinical Immunology, 2004, 113, 789-790.	1.5	6
128	STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. European Respiratory Journal, 2004, 24, 78-85.	3.1	120
129	Proliferation and inflammation in bronchial epithelium after allergen in atopic asthmatics. Clinical and Experimental Allergy, 2003, 33, 905-911.	1.4	34
130	cNOS–iNOS paradigm and arginase in asthma. Trends in Pharmacological Sciences, 2003, 24, 560-561.	4.0	40
131	Effect of bradykinin on allergen induced increase in exhaled nitric oxide in asthma. Thorax, 2003, 58, 840-845.	2.7	23
132	Multiple roles of nitric oxide in the airways. Thorax, 2003, 58, 175-182.	2.7	278
133	Inhaled Ultrasonically Nebulized Distilled Water Decreases Exhaled Nitric Oxide in Asthma. Lung, 2002, 180, 319-326.	1.4	2
134	Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. Journal of Allergy and Clinical Immunology, 2001, 108, 198-204.	1.5	86
135	Mechanisms of citric acid-induced bronchoconstriction. American Journal of Medicine, 2001, 111, 18-24.	0.6	97
136	Role of nitric oxide and septide-insensitive NK1 receptors in bronchoconstriction induced by aerosolised neurokinin A in guinea-pigs. British Journal of Pharmacology, 2000, 129, 915-920.	2.7	20
137	Detection of Nitric Oxide Release Induced by Bradykinin in Guinea Pig Trachea and Main Bronchi Using a Porphyrinic Microsensor. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 97-104.	1.4	31
138	Presence and Bronchomotor Activity of Protease-Activated Receptor-2 in Guinea Pig Airways. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1672-1680.	2.5	105
139	Bronchoconstriction Induced by Citric Acid Inhalation in Guinea Pigs. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 557-562.	2.5	121
140	Exhaled nitric oxide in COPD: glancing through a smoke screen. Thorax, 1999, 54, 565-567.	2.7	29
141	Characterization of the endothelin receptor subtype mediating epithelium-derived relaxant nitric oxide release from guinea-pig trachea. British Journal of Pharmacology, 1998, 125, 963-968.	2.7	14
142	Bradykinin increases intracellular calcium levels in a human bronchial epithelial cell line via the B 2 receptor subtype. Inflammation Research, 1998, 47, 231-235.	1.6	10
143	Nitric oxide and response to inhaled bradykinin in severe asthma. Lancet, The, 1998, 351, 449-450.	6.3	9
144	Impairment of bronchoprotection by nitric oxide in severe asthma. Lancet, The, 1997, 350, 1297-1298.	6.3	67

9

#	Article	IF	CITATIONS
145	Cold air-induced bronchoconstriction is mediated by tachykinin and kinin release in guinea pigs. European Journal of Pharmacology, 1996, 296, 291-296.	1.7	36
146	Randomised double-blind placebo-controlled study of the effect of inhibition of nitric oxide synthesis in bradykinin-induced asthma. Lancet, The, 1996, 348, 374-377.	6.3	144
147	Changes in respiratory drive account for the magnitude of dyspnoea during bronchoconstriction in asthmatics. European Respiratory Journal, 1996, 9, 1155-1159.	3.1	12
148	Evidence that epithelium-derived relaxing factor released by bradykinin in the guinea pig trachea is nitric oxide American Journal of Respiratory and Critical Care Medicine, 1996, 153, 918-923.	2.5	73
149	Nedocromil sodium and sodium cromoglycate inhibit plasma extravasation in the guinea-pig conjunctiva. Ocular Immunology and Inflammation, 1995, 3, 37-44.	1.0	2
150	Plasma Extravasation in the Rat Trachea Induced by Cold Air is Mediated by Tachykinin Release from Sensory Nerves. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1011-1017.	2.5	45
151	Corticotropin-releasing factor inhibits antigen-induced plasma extravasation in airways. European Journal of Pharmacology, 1995, 280, 113-118.	1.7	17
152	New aspects on the role of kinins in neurogenic inflammation. Canadian Journal of Physiology and Pharmacology, 1995, 73, 843-847.	0.7	27
153	Tachykinins and kinins in antigen-evoked plasma extravasation in guinea-pig nasal mucosa. European Journal of Pharmacology, 1994, 261, 127-132.	1.7	27
154	Role of kinins in anaphylacticâ€induced bronchoconstriction mediated by tachykinins in guineaâ€pigs. British Journal of Pharmacology, 1994, 113, 508-512.	2.7	41
155	Evidence for reduction of bradykininâ€induced bronchoconstriction in guineaâ€pigs by release of nitric oxide. British Journal of Pharmacology, 1994, 113, 1147-1152.	2.7	46
156	Cyclooxygenase products mediate the cutaneous vasodilation induced by endothelin-1 in humans. Regulatory Peptides, 1993, 47, 233-238.	1.9	3