Stephen B Dunnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055320/publications.pdf

Version: 2024-02-01

453 papers

31,156 citations

86 h-index 7627 156 g-index

466 all docs

466 docs citations

466 times ranked 20610 citing authors

#	Article	IF	CITATIONS
1	Dopaminergic Progenitors Derived From Epiblast Stem Cells Function Similarly to Primary VM-Derived Progenitors When Transplanted Into a Parkinson's Disease Model. Frontiers in Neuroscience, 2020, 14, 312.	1.4	0
2	The Amphetamine Induced Rotation Test: A Re-Assessment of Its Use as a Tool to Monitor Motor Impairment and Functional Recovery in Rodent Models of Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 17-29.	1.5	60
3	Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation InÂVitro and in the Rat Brain. Stem Cell Reports, 2019, 12, 191-200.	2.3	16
4	The Effect of Tissue Preparation and Donor Age on Striatal Graft Morphology in the Mouse. Cell Transplantation, 2018, 27, 230-244.	1.2	3
5	Phosphorylation of Parkin at serine 65 is essential for its activation <i>in vivo</i> . Open Biology, 2018, 8, 180108.	1.5	81
6	Outcome of cell suspension allografts in a patient with Huntington's disease. Annals of Neurology, 2018, 84, 950-956.	2.8	16
7	Motor Assessment in Huntington's Disease Mice. Methods in Molecular Biology, 2018, 1780, 121-141.	0.4	12
8	Generating Excitotoxic Lesion Models of Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 209-220.	0.4	7
9	I21â€Functional assessment of grafted human embryonic stem cells-derived progenitors in a rat model of huntington's disease. , 2018, , .		0
10	Systematic and detailed analysis of behavioural tests in the rat middle cerebral artery occlusion model of stroke: Tests for long-term assessment. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1349-1361.	2.4	48
11	Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?. Neurochemistry International, 2017, 106, 114-121.	1.9	20
12	Transplantation site influences the phenotypic differentiation of dopamine neurons in ventral mesencephalic grafts in Parkinsonian rats. Experimental Neurology, 2017, 291, 8-19.	2.0	11
13	Lickometry: A novel and sensitive method for assessing functional deficits in rats after stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 755-761.	2.4	4
14	Reprogramming the diseased brain. Nature Biotechnology, 2017, 35, 426-428.	9.4	1
15	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington's disease. Scientific Reports, 2017, 7, 41570.	1.6	16
16	Mechanisms and use of neural transplants for brain repair. Progress in Brain Research, 2017, 230, 1-51.	0.9	11
17	Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease. Brain, Behavior, and Immunity, 2017, 61, 155-164.	2.0	12
18	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	5.2	215

#	Article	IF	Citations
19	Rehabilitation training in neural restitution. Progress in Brain Research, 2017, 230, 305-329.	0.9	5
20	Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE, 2016, 11, e0155834.	1.1	16
21	A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0164072.	1.1	14
22	Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue Grafts on Motor Function. Cell Transplantation, 2016, 25, 665-675.	1.2	11
23	B12â€Characterising gene expression changes in mouse lines with varying repeat lengths in HTT. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A13.1-A13.	0.9	0
24	Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: Ready for efficacy clinical trials?. Cytotherapy, 2016, 18, 1471-1475.	0.3	21
25	C4â€Motivation and reward seeking in HD mouse lines: possible association with ventral striatal mHTT load and dopamine receptor loss. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A28.1-A28.	0.9	0
26	A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2016, 5, 149-161.	0.9	14
27	Targeting delivery in Parkinson's disease. Drug Discovery Today, 2016, 21, 1313-1320.	3.2	15
28	Cognitive training modifies disease symptoms in a mouse model of Huntington's disease. Experimental Neurology, 2016, 282, 19-26.	2.0	14
29	Using Actiwatch to monitor circadian rhythm disturbance in Huntington' disease: A cautionary note. Journal of Neuroscience Methods, 2016, 265, 13-18.	1.3	13
30	The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 72-80.	1.3	23
31	Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 81-88.	1.3	39
32	Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence. BMC Genomics, 2015, 16, 1079.	1.2	7
33	Translation of Cell Therapies to the Clinic: Characteristics of Cell Suspensions in Large-Diameter Injection Cannulae. Cell Transplantation, 2015, 24, 737-749.	1.2	15
34	A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington's Disease. Frontiers in Neurology, 2015, 6, 177.	1.1	47
35	Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development (Cambridge), 2015, 142, 1375-1386.	1.2	134
36	The 6-OHDA mouse model of Parkinson's disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behavioural Brain Research, 2015, 288, 107-117.	1.2	46

#	Article	lF	Citations
37	Huntingtin Subcellular Localisation Is Regulated by Kinase Signalling Activity in the StHdhQ111 Model of HD. PLoS ONE, 2015, 10, e0144864.	1.1	4
38	Nigral 6-hydroxydopamine lesion impairs performance in a lateralised choice reaction time taskâ€"Impact of training and task parameters. Behavioural Brain Research, 2014, 266, 207-215.	1.2	5
39	Identification of Novel Alternative Splicing Events in the Huntingtin Gene and Assessment of the Functional Consequences Using Structural Protein Homology Modelling. Journal of Molecular Biology, 2014, 426, 1428-1438.	2.0	19
40	The effect of additional noradrenergic and serotonergic depletion on a lateralised choice reaction time task in rats with nigral 6-OHDA lesions. Experimental Neurology, 2014, 253, 52-62.	2.0	9
41	Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiology of Disease, 2014, 61, 79-89.	2.1	56
42	Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Frontiers in Cellular Neuroscience, 2014, 8, 398.	1.8	16
43	Neurotoxins., 2014,, 1-8.		0
44	Neural tissue transplantation, repair, and rehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 43-59.	1.0	19
45	What helps can also hinder: A dissociation in the acute effect of levodopa treatment on motor and cognitive functions. Movement Disorders, 2013, 28, 563-564.	2.2	0
46	Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington's disease mouse model. Experimental Neurology, 2013, 248, 457-469.	2.0	59
47	Comparison of rating scales used to evaluate l-DOPA-induced dyskinesia in the 6-OHDA lesioned rat. Neurobiology of Disease, 2013, 50, 142-150.	2.1	37
48	Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development (Cambridge), 2013, 140, 301-312.	1.2	146
49	Characterisation of spatial neglect induced by unilateral 6-OHDA lesions on a choice reaction time task in rats. Behavioural Brain Research, 2013, 237, 215-222.	1.2	5
50	115. Cytokine, 2013, 63, 270.	1.4	0
51	Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 2013, 71, 148-153.	2.0	41
52	Dopamine-rich grafts alleviate deficits in contralateral response space induced by extensive dopamine depletion in rats. Experimental Neurology, 2013, 247, 485-495.	2.0	19
53	Comparison of 6â€hydroxydopamine lesions of the substantia nigra and the medial forebrain bundle on a lateralised choice reaction time task in mice. European Journal of Neuroscience, 2013, 37, 294-302.	1.2	16
54	Cognitive deficits in animal models of basal ganglia disorders. Brain Research Bulletin, 2013, 92, 29-40.	1.4	10

#	Article	IF	CITATIONS
55	Behavioural recovery on simple and complex tasks by means of cell replacement therapy in unilateral 6â€hydroxydopamineâ€lesioned mice. European Journal of Neuroscience, 2013, 37, 1691-1704.	1.2	9
56	Is the adult mouse striatum a hostile host for neural transplant survival?. NeuroReport, 2013, 24, 1010-1015.	0.6	15
57	Mouse Models of Huntington's Disease. Current Topics in Behavioral Neurosciences, 2013, 22, 101-133.	0.8	21
58	The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 657-665.	0.9	80
59	Long-term restorative effects of bromocriptine on operant responding in the 6-hydroxydopamine-lesioned rat. NeuroReport, 2013, 24, 1019-1024.	0.6	O
60	Survival and Functional Restoration of Human Fetal Ventral Mesencephalon following Transplantation in a Rat Model of Parkinson's Disease. Cell Transplantation, 2013, 22, 1281-1293.	1.2	40
61	Brain Repair in a Unilateral Rat Model of Huntington's Disease: New Insights into Impairment and Restoration of Forelimb Movement Patterns. Cell Transplantation, 2013, 22, 1735-1751.	1.2	17
62	Reply to "Neonatal desensitization does not universally prevent xenograft rejection". Nature Methods, 2012, 9, 858-858.	9.0	0
63	Amphetamine-Induced Dyskinesia in the Transplanted Hemi-Parkinsonian Mouse. Journal of Parkinson's Disease, 2012, 2, 107-113.	1.5	9
64	Unilateral 6-OHDA Lesions Induce Lateralised Deficits in a â€~Skinner box' Operant Choice Reaction Time Task in Rats. Journal of Parkinson's Disease, 2012, 2, 309-320.	1.5	5
65	Drug repositioning for Alzheimer's disease. Nature Reviews Drug Discovery, 2012, 11, 833-846.	21.5	239
66	Intrastriatal excitotoxic lesion or dopamine depletion of the neostriatum differentially impairs response execution in extrapersonal space. European Journal of Neuroscience, 2012, 36, 3420-3428.	1.2	6
67	Amphetamine-induced rotation in the transplanted hemi-parkinsonian rat – Response to pharmacological modulation. Behavioural Brain Research, 2012, 232, 411-415.	1.2	3
68	Do alpha-synuclein vector injections provide a better model of Parkinson's disease than the classic 6-hydroxydopamine model?. Experimental Neurology, 2012, 237, 36-42.	2.0	31
69	The search for genetic mouse models of prodromal Parkinson's disease. Experimental Neurology, 2012, 237, 267-273.	2.0	24
70	Unilateral nigrostriatal 6-hydroxydopamine lesions in mice II: Predicting l-DOPA-induced dyskinesia. Behavioural Brain Research, 2012, 226, 281-292.	1,2	51
71	Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites. Behavioural Brain Research, 2012, 228, 30-43.	1.2	88
72	Longitudinal analysis of the behavioural phenotype in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 148-155.	1.4	37

#	Article	IF	CITATIONS
73	Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 182-188.	1.4	49
74	Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 113-120.	1.4	50
75	A novel extended sequence learning task (ESLeT) for rodents: Validation and the effects of amphetamine, scopolamine and striatal lesions. Brain Research Bulletin, 2012, 88, 237-250.	1.4	10
76	Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 94-103.	1.4	53
77	Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes. Brain Research Bulletin, 2012, 88, 210-222.	1.4	23
78	Early onset deficits on the delayed alternation task in the HdhQ92 knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 156-162.	1.4	17
79	Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 171-181.	1.4	27
80	Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse. Brain Research Bulletin, 2012, 88, 189-198.	1.4	31
81	Operant-based instrumental learning for analysis of genetically modified models of Huntington's disease. Brain Research Bulletin, 2012, 88, 261-275.	1.4	12
82	Bilateral striatal lesions disrupt performance in an operant delayed reinforcement task in rats. Brain Research Bulletin, 2012, 88, 251-260.	1.4	13
83	Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 137-147.	1.4	36
84	Selective cognitive impairment in the YAC128 Huntington's disease mouse. Brain Research Bulletin, 2012, 88, 121-129.	1.4	42
85	Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brain Research Bulletin, 2012, 88, 130-136.	1.4	22
86	Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 104-112.	1.4	42
87	Gene expression and behaviour in mouse models of HD. Brain Research Bulletin, 2012, 88, 276-284.	1.4	28
88	Profiles of motor and cognitive impairment in the transgenic rat model of Huntington's disease. Brain Research Bulletin, 2012, 88, 223-236.	1.4	25
89	Longitudinal analysis of gene expression and behaviour in the HdhQ150 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 199-209.	1.4	18
90	Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Research Bulletin, 2012, 88, 81-93.	1.4	34

#	Article	IF	Citations
91	Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 163-170.	1.4	17
92	Introduction (Part I). Progress in Brain Research, 2012, 200, 3-5.	0.9	2
93	Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats. Neuropharmacology, 2012, 63, 818-828.	2.0	16
94	Analysis of Skilled Forelimb Movement in Rats: The Single Pellet Reaching Test and Staircase Test. Current Protocols in Neuroscience, 2012, 58, Unit8.28.	2.6	31
95	Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests. Current Protocols in Mouse Biology, 2012, 2, 37-53.	1.2	49
96	Introduction (Part II). Progress in Brain Research, 2012, 201, 3-5.	0.9	2
97	Nigral grafts in animal models of Parkinson's disease. Is recovery beyond motor function possible?. Progress in Brain Research, 2012, 200, 113-142.	0.9	9
98	Long-term expansion of human foetal neural progenitors leads to reduced graft viability in the neonatal rat brain. Experimental Neurology, 2012, 235, 563-573.	2.0	15
99	The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neuroscience and Biobehavioral Reviews, 2012, 36, 1030-1042.	2.9	111
100	Cognitive dysfunction and depression in Parkinson's disease: what can be learned from rodent models?. European Journal of Neuroscience, 2012, 35, 1894-1907.	1.2	46
101	Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 182-188.	1.4	29
102	Choice Reaction Time and Learning. , 2012, , 534-537.		4
103	Observing Huntington's disease: the European Huntington's Disease Network's REGISTRY. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1409-1412.	0.9	82
104	Three-dimensional motion analysis of postural adjustments during over-ground locomotion in a rat model of Parkinson's disease. Behavioural Brain Research, 2011, 220, 119-125.	1.2	10
105	Impaired sensitivity to Pavlovian stimulus–outcome learning after excitotoxic lesion of the ventrolateral neostriatum. Behavioural Brain Research, 2011, 225, 522-528.	1.2	7
106	Technical factors that influence neural transplant safety in Huntington's disease. Experimental Neurology, 2011, 227, 1-9.	2.0	49
107	Aberrant Dopamine Transmission and Cognitive Dysfunction in Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 151-165.	1.5	9
108	Medical Terminations of Pregnancy: A Viable Source of Tissue for Cell Replacement Therapy for Neurodegenerative Disorders. Cell Transplantation, 2011, 20, 503-513.	1.2	25

7

#	Article	IF	CITATIONS
109	Proximal movements compensate for distal forelimb movement impairments in a reach-to-eat task in Huntington's disease: New insights into motor impairments in a real-world skill. Neurobiology of Disease, 2011, 41, 560-569.	2.1	38
110	Context-driven changes in l-DOPA-induced behaviours in the 6-OHDA lesioned rat. Neurobiology of Disease, 2011, 42, 99-107.	2.1	10
111	A Critical Re-Examination of the Intraluminal Filament MCAO Model: Impact of External Carotid Artery Transection. Translational Stroke Research, 2011, 2, 651-661.	2.3	43
112	Validating the use of M4-BAC-GFP mice as tissue donors in cell replacement therapies in a rodent model of Huntington's disease. Journal of Neuroscience Methods, 2011, 197, 6-13.	1.3	4
113	Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. Journal of Neuroscience Methods, 2011, 200, 29-35.	1.3	35
114	Cell-Based Treatments for Huntington's Disease. International Review of Neurobiology, 2011, 98, 483-508.	0.9	13
115	Clinical translation of cell transplantation in the brain. Current Opinion in Organ Transplantation, 2011, 16, 632-639.	0.8	29
116	Cell transplantation for Huntington's disease: practical and clinical considerations. Future Neurology, 2011, 6, 45-62.	0.9	9
117	Environmental Enrichment Facilitates Long-Term Potentiation in Embryonic Striatal Grafts. Neurorehabilitation and Neural Repair, 2011, 25, 548-557.	1.4	16
118	6-OHDA Lesion Models of Parkinson's Disease in the Rat. Neuromethods, 2011, , 267-279.	0.2	9
119	NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLOS Currents, 2011, 3, RRN1247.	1.4	20
120	Review: Neurorehabilitation With Neural Transplantation. Neurorehabilitation and Neural Repair, 2010, 24, 692-701.	1.4	44
121	Neural grafting in Parkinson's disease. Progress in Brain Research, 2010, 184, 295-309.	0.9	57
122	Age-Dependent Maintenance of Motor Controland Corticostriatal Innervation by Death Receptor 3. Journal of Neuroscience, 2010, 30, 3782-3792.	1.7	21
123	Lewy Body Dementia. , 2010, , 705-705.		0
124	Challenges Facing Quantification of Rat Locomotion along Beams of Varying Widths. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1257-1265.	1.0	7
125	Pre-treatment with dopamine agonists influence l-dopa mediated rotations without affecting abnormal involuntary movements in the 6-OHDA lesioned rat. Behavioural Brain Research, 2010, 213, 66-72.	1.2	21
126	Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson's disease. Progress in Brain Research, 2010, 184, 35-51.	0.9	38

#	Article	IF	CITATIONS
127	Observing Huntington's Disease: the European Huntington's Disease Network's REGISTRY. PLOS Currents, 2010, 2, RRN1184.	1.4	124
128	Chapter 55 Neural transplantation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2009, 95, 885-912.	1.0	11
129	Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiology of Disease, 2009, 33, 358-368.	2.1	101
130	Lesions of the premotor and supplementary motor areas fail to prevent implicit learning in the operant serial implicit learning task. Brain Research, 2009, 1284, 116-124.	1.1	3
131	Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nature Methods, 2009, 6, 271-273.	9.0	41
132	Tests to assess motor phenotype in mice: a user's guide. Nature Reviews Neuroscience, 2009, 10, 519-529.	4.9	513
133	Embryonic striatal grafts restore biâ€directional synaptic plasticity in a rodent model of Huntington's disease. European Journal of Neuroscience, 2009, 30, 2134-2142.	1.2	40
134	Membrane permeability coefficients of murine primary neural brain cells in the presence of cryoprotectant. Cryobiology, 2009, 58, 308-314.	0.3	9
135	Genetic, temporal and diurnal influences on L-dopa-induced dyskinesia in the 6-OHDA model. Brain Research Bulletin, 2009, 78, 248-253.	1.4	12
136	Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. Brain Research Bulletin, 2009, 79, 310-315.	1.4	18
137	Rule learning, visuospatial function and motor performance in the HdhQ92 knock-in mouse model of Huntington's disease. Behavioural Brain Research, 2009, 203, 215-222.	1.2	33
138	A Simple Breeding Protocol for the Procurement of Accurately Staged Rat Donor Embryos for Neural Transplantation. Cell Transplantation, 2009, 18, 471-476.	1.2	4
139	Medium spiny neurons for transplantation in Huntington's disease. Biochemical Society Transactions, 2009, 37, 323-328.	1.6	28
140	9.4 Transplantation of Dopamine Neurons: Extent and Mechanisms of Functional Recovery in Rodent Models of Parkinson's Disease., 2009, , 454-477.		3
141	Animal models of Parkinson's disease and L-dopa induced dyskinesia: How close are we to the clinic?. Psychopharmacology, 2008, 199, 303-312.	1.5	60
142	Human stem cells for CNS repair. Cell and Tissue Research, 2008, 331, 301-322.	1.5	69
143	Onâ€Chip Alginate Microencapsulation of Functional Cells. Macromolecular Rapid Communications, 2008, 29, 165-170.	2.0	51
144	Animal Models of Parkinson's Disease. , 2008, , 313-322.		3

#	Article	IF	CITATIONS
145	Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington's disease. Genes, Brain and Behavior, 2008, 7, 288-299.	1.1	58
146	Recovery of functional deficits following early donor age ventral mesencephalic grafts in a rat model of Parkinson's disease. Neuroscience, 2008, 154, 631-640.	1.1	46
147	Time course of choice reaction time deficits in the HdhQ92 knock-in mouse model of Huntington's disease in the operant Serial Implicit Learning Task (SILT). Behavioural Brain Research, 2008, 189, 317-324.	1.2	36
148	Ascorbic Acid Increases the Number of Dopamine Neurons In Vitro and in Transplants to the 6-OHDA-Lesioned Rat Brain. Cell Transplantation, 2008, 17, 763-773.	1.2	31
149	Potential cellular and regenerative approaches for the treatment of Parkinson's disease. Neuropsychiatric Disease and Treatment, 2008, 4, 835.	1.0	19
150	Functional Analysis of Fronto-Striatal Reconstruction by Striatal Grafts. Novartis Foundation Symposium, 2008, , 21-52.	1.2	17
151	Environmental Housing and Duration of Exposure Affect Striatal Graft Morphology in a Rodent Model of Huntington's Disease. Cell Transplantation, 2008, 17, 1125-1134.	1.2	23
152	Striatal graft projections are influenced by donor cell type and not the immunogenic background. Brain, 2007, 130, 1317-1329.	3.7	40
153	Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells. Biomicrofluidics, 2007, 1, 014105.	1.2	60
154	Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861.	1.4	304
155	Movement without dopamine: striatal dopamine is required to maintain but not to perform learned actions. Biochemical Society Transactions, 2007, 35, 428-432.	1.6	22
156	Stem cell transplantation for neurodegenerative diseases. Current Opinion in Neurology, 2007, 20, 688-692.	1.8	68
157	Fifty years of dopamine research. Trends in Neurosciences, 2007, 30, 185-187.	4.2	109
158	Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 2007, 30, 194-202.	4.2	1,414
159	Improved survival of young donor age dopamine grafts in a rat model of Parkinson's disease. Neuroscience, 2007, 146, 1606-1617.	1.1	46
160	The corridor task: Striatal lesion effects and graft-mediated recovery in a model of Huntington's disease. Behavioural Brain Research, 2007, 179, 326-330.	1.2	20
161	Stem cell transplantation for Huntington's disease. Experimental Neurology, 2007, 203, 279-292.	2.0	57
162	Cell transplantation for Huntington's disease. Brain Research Bulletin, 2007, 72, 132-147.	1.4	35

#	Article	IF	Citations
163	Amphetamine induced rotation in the assessment of lesions and grafts in the unilateral rat model of Parkinson's disease. European Neuropsychopharmacology, 2007, 17, 206-214.	0.3	28
164	Neural Transplantation in Parkinson's Disease. , 2007, , 439-454.		1
165	An operant serial implicit learning task (SILT) in rats: Task acquisition, performance and the effects of striatal lesions. Journal of Neuroscience Methods, 2007, 163, 235-244.	1.3	24
166	The operant serial implicit learning task reveals early onset motor learning deficits in the HdhQ92knock-in mouse model of Huntington's disease. European Journal of Neuroscience, 2007, 25, 551-558.	1.2	56
167	Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task. Brain Research, 2007, 1185, 179-188.	1.1	17
168	Neural Transplantation in Huntington's Disease., 2007,, 417-437.		2
169	The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Experimental Neurology, 2006, 199, 373-383.	2.0	31
170	Striatal grafts alleviate bilateral striatal lesion deficits in operant delayed alternation in the rat. Experimental Neurology, 2006, 199, 479-489.	2.0	28
171	Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behavioural Brain Research, 2006, 171, 116-126.	1.2	123
172	Hippocampal lesions impair performance on a conditional delayed matching and non-matching to position task in the rat. Behavioural Brain Research, 2006, 171, 240-250.	1.2	16
173	Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2006, 69, 452-457.	1.4	42
174	Pharmaceutical, cellular and genetic therapies for Huntington's disease. Clinical Science, 2006, 110, 73-88.	1.8	47
175	Fronto-striatal disconnection disrupts operant delayed alternation performance in the rat. NeuroReport, 2006, 17, 435-441.	0.6	14
176	Neural Transplantation in Huntington's Disease: The NEST-UK Donor Tissue Microbiological Screening Program and Review of the Literature. Cell Transplantation, 2006, 15, 279-294.	1.2	15
177	Re-examining the ontogeny of substantia nigra dopamine neurons. European Journal of Neuroscience, 2006, 23, 1384-1390.	1.2	71
178	Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. European Journal of Neuroscience, 2006, 24, 3223-3233.	1.2	33
179	An investigation of the problem of two-layered immunohistochemical staining in paraformaldehyde fixed sections. Journal of Neuroscience Methods, 2006, 158, 64-74.	1.3	20
180	Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. Journal of Neuroscience Methods, 2006, 158, 219-223.	1.3	223

#	Article	IF	Citations
181	Cell transplantation for Huntington's disease. Lancet Neurology, The, 2006, 5, 284-285.	4.9	5
182	Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics, 2006, 7, 211.	1.2	35
183	Impaired Bidirectional Synaptic Plasticity and Procedural Memory Formation in Striatum-Specific cAMP Response Element-Binding Protein-Deficient Mice. Journal of Neuroscience, 2006, 26, 2808-2813.	1.7	93
184	Cell-Based Therapy for Huntington's Disease. , 2006, , 83-116.		1
185	The survival of neural precursor cell grafts is influenced by in vitro expansion. Journal of Anatomy, 2005, 207, 227-240.	0.9	30
186	A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. European Journal of Neuroscience, 2005, 21, 855-870.	1.2	71
187	Lentivectorâ€mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. European Journal of Neuroscience, 2005, 22, 2587-2595.	1.2	84
188	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes, Brain and Behavior, 2005, 4, 307-317.	1.1	139
189	Surveying the literature from animal experiments. BMJ: British Medical Journal, 2005, 330, 977-978.	2.4	29
190	Optimising Plasticity: Environmental and Training Associated Factors in Transplant-mediated Brain Repair. Reviews in the Neurosciences, 2005, 16, 1-22.	1.4	35
191	In vivo transgene expression from an adenoviral vector is altered following a 6-OHDA lesion of the dopamine system. Molecular Brain Research, 2005, 137, 1-10.	2.5	5
192	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in a lateralised nose-poking task in rats. Behavioural Brain Research, 2005, 159, 153-161.	1.2	45
193	Implicit learning in a serial choice visual discrimination task in the operant 9-hole box by intact and striatal lesioned mice. Behavioural Brain Research, 2005, 159, 313-322.	1.2	24
194	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in rats using a lateralised nose-poking task with low stimulus–response compatibility. Behavioural Brain Research, 2005, 165, 181-186.	1.2	19
195	Validation of the I-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Research Bulletin, 2005, 68, 16-23.	1.4	64
196	The Corridor Task: A simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatum. Brain Research Bulletin, 2005, 68, 24-30.	1.4	86
197	EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Research Bulletin, 2005, 68, 83-94.	1.4	51
198	Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson's disease using adenoviral vectors. Brain Research Bulletin, 2005, 68, 31-41.	1.4	31

#	Article	IF	Citations
199	Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Neuroscience, 2005, 132, 543-552.	1.1	46
200	Frontal-striatal disconnection disrupts cognitive performance of the frontal-type in the rat. Neuroscience, 2005, 135, 1055-1065.	1.1	66
201	Chapter V Motor function(s) of the nigrostriatal dopamine system: Studies of lesions and behavior. Handbook of Chemical Neuroanatomy, 2005, 21, 237-301.	0.3	8
202	Transplanted hNT Cells ("LBS Neuronsâ€) in a Rat Model of Huntington's Disease: Good Survival, Incomplete Differentiation, and Limited Functional Recovery. Cell Transplantation, 2004, 13, 123-136.	1.2	21
203	Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation, 2004, 11, 60-71.	1.6	13
204	Environmental enrichment affects striatal graft morphology and functional recovery. European Journal of Neuroscience, 2004, 19, 159-168.	1.2	60
205	Striatal neurons in striatal grafts are derived from both post-mitotic cells and dividing progenitors. European Journal of Neuroscience, 2004, 19, 513-520.	1.2	22
206	Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants. European Journal of Neuroscience, 2004, 20, 1953-1959.	1.2	42
207	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I: motor tests. Genes, Brain and Behavior, 2004, 3, 206-215.	1.1	79
208	Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. European Journal of Neuroscience, 2004, 19, 831-844.	1.2	74
209	HSV vector-delivery of GDNF in a rat model of PD: partial efficacy obscured by vector toxicity. Brain Research, 2004, 1024, 1-15.	1.1	17
210	Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine. Psychopharmacology, 2004, 174, 396-405.	1.5	33
211	Cell therapy in Huntington's disease. NeuroRx, 2004, 1, 394-405.	6.0	63
212	Impact factor rises again. Brain Research Bulletin, 2004, 64, 285-287.	1.4	3
213	Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the \hat{I}^2 -amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience, 2004, 129, 583-592.	1.1	91
214	Selective Lesioning of the Cholinergic Septo-Hippocampal Pathway Does Not Disrupt Spatial Short-Term Memory: A Comparison With the Effects of Fimbria-Fornix Lesions Behavioral Neuroscience, 2004, 118, 546-562.	0.6	36
215	Cell therapy in Huntington's disease. Neurotherapeutics, 2004, 1, 394-405.	2.1	0
216	Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson's disease. Experimental Brain Research, 2003, 151, 204-217.	0.7	37

#	Article	IF	Citations
217	Neural transplantation for the treatment of Parkinson's disease. Lancet Neurology, The, 2003, 2, 437-445.	4.9	322
218	L-DOPA, dyskinesia and striatal plasticity. Nature Neuroscience, 2003, 6, 437-438.	7.1	12
219	Motor training effects on recovery of function after striatal lesions and striatal grafts. Experimental Neurology, 2003, 184, 274-284.	2.0	73
220	Neural Transplantation in Patients with Huntington???s Disease. CNS Drugs, 2003, 17, 853-867.	2.7	33
221	Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain, 2003, 126, 1127-1135.	3.7	201
222	Long-Term Hibernation of Human Fetal Striatal Tissue does Not Adversely Affect its Differentiation In Vitro or Graft Survival: Implications for Clinical Trials in Huntington's Disease. Cell Transplantation, 2003, 12, 687-695.	1.2	31
223	The Release of Excitatory Amino Acids, Dopamine, and Potassium following Transplantation of Embryonic Mesencephalic Dopaminergic Grafts to the Rat Striatum, and Their Effects on Dopaminergic Neuronal Survival In Vitro. Cell Transplantation, 2002, 11, 637-652.	1.2	10
224	Unilateral transplantation of human primary fetal tissue in four patients with Huntington's disease: NEST-UK safety report ISRCTN no 36485475. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 678-685.	0.9	164
225	The Potential for Circuit Reconstruction by Expanded Neural Precursor Cells Explored through Porcine Xenografts in a Rat Model of Parkinson's Disease. Experimental Neurology, 2002, 175, 98-111.	2.0	69
226	Controversies and Letters to the Editor. Brain Research Bulletin, 2002, 58, 545.	1.4	0
227	Cell therapy for Huntington's disease, the next step forward. Lancet Neurology, The, 2002, 1, 81.	4.9	13
228	Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. European Journal of Neuroscience, 2002, 15, 1255-1266.	1.2	65
229	Rewiring the Parkinsonian brain. Nature Medicine, 2002, 8, 105-106.	15.2	14
230	Which Basal Ganglia Surgical Targets Ameliorate Parkinsonian Symptoms?. Advances in Behavioral Biology, 2002, , 533-542.	0.2	0
231	Motor Coordination and Balance in Rodents. Current Protocols in Neuroscience, 2001, 15, 8.12.1-8.12.14.	2.6	306
232	Death of Dopaminergic Neurons in Vitro and in Nigral Grafts: Reevaluating the Role of Caspase Activation. Experimental Neurology, 2001, 171, 46-58.	2.0	25
233	Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience, 2001, 106, 201-216.	1.1	66
234	The staircase test of skilled reaching in mice. Brain Research Bulletin, 2001, 54, 243-250.	1.4	94

#	Article	IF	Citations
235	Differential effects of unilateral striatal and nigrostriatal lesions on grip strength, skilled paw reaching and drug-induced rotation in the rat. Brain Research Bulletin, 2001, 55, 541-548.	1.4	44
236	Reverse transcription of inserted DNA in a monkey gives us ANDi. Trends in Pharmacological Sciences, 2001, 22, 211-214.	4.0	1
237	Role of corticostriatal and nigrostriatal inputs in malonate-induced striatal toxicity. NeuroReport, 2001, 12, 89-93.	0.6	9
238	Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 2001, 13, 1609-1616.	1.2	106
239	Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Therapy, 2001, 8, 1057-1071.	2.3	24
240	Cell therapy in Parkinson's disease – stop or go?. Nature Reviews Neuroscience, 2001, 2, 365-369.	4.9	219
241	The influence of environment and experience on neural grafts. Nature Reviews Neuroscience, 2001, 2, 871-879.	4.9	88
242	Neural Stem Cell Technology as a Novel Treatment for Parkinson's Disease., 2001, 62, 289-307.		3
243	Chapter 16 The integration and function of striatal grafts. Progress in Brain Research, 2000, 127, 345-380.	0.9	62
244	Survival, Neuronal Differentiation, and Fiber Outgrowth of Propagated Human Neural Precursor Grafts in an Animal Model of Huntington's Disease. Cell Transplantation, 2000, 9, 55-64.	1.2	129
245	Behavioral recovery after transplantation into a rat model of Huntington's disease: Dependence on anatomical connectivity and extensive postoperative training Behavioral Neuroscience, 2000, 114, 431-436.	0.6	32
246	Towards a Protocol for the Preparation and Delivery of Striatal Tissue for Clinical Trials of Transplantation in Huntington's Disease. Cell Transplantation, 2000, 9, 223-234.	1.2	24
247	The Morphology, Integration, and Functional Efficacy of Striatal Grafts Differ between Cell Suspensions and Tissue Pieces. Cell Transplantation, 2000, 9, 395-407.	1.2	28
248	Volume and Differentiation of Striatal Grafts in Rats: Relationship to the Number of Cells Implanted. Cell Transplantation, 2000, 9, 65-72.	1.2	15
249	The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain. European Journal of Neuroscience, 2000, 12, 2405-2413.	1.2	61
250	Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington's disease. Journal of Anatomy, 2000, 196, 597-607.	0.9	9
251	The problem of antipsychotic treatment for functional imaging in Huntington's disease: receptor binding, gene expression and locomotor activity after sub-chronic administration and wash-out of haloperidol in the rat. Brain Research, 2000, 853, 125-135.	1.1	9
252	Antioxidant strategy to counteract the side effects of antipsychotic therapy: an in vivo study in rats. European Journal of Pharmacology, 2000, 408, 35-39.	1.7	4

#	Article	IF	CITATIONS
253	Age-dependence of malonate-induced striatal toxicity. Experimental Brain Research, 2000, 134, 335-343.	0.7	7
254	Hibernated Human Fetal Striatal Tissue: Successful Transplantation in a Rat Model of Huntington's Disease. Cell Transplantation, 2000, 9, 743-749.	1.2	29
255	A Role for Complement in the Rejection of Porcine Ventral Mesencephalic Xenografts in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2000, 20, 3415-3424.	1.7	70
256	Abnormal Synaptic Plasticity and Impaired Spatial Cognition in Mice Transgenic for Exon 1 of the Human Huntington's Disease Mutation. Journal of Neuroscience, 2000, 20, 5115-5123.	1.7	366
257	Chapter 11 Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Progress in Brain Research, 2000, 127, 233-265.	0.9	85
258	The T Cell Oncogene Tal2 Is Necessary for Normal Development of the Mouse Brain. Developmental Biology, 2000, 227, 533-544.	0.9	36
259	Robust Regeneration of CNS Axons through a Track Depleted of CNS Glia. Experimental Neurology, 2000, 161, 49-66.	2.0	57
260	Embryonic Donor Age and Dissection Influences Striatal Graft Development and Functional Integration in a Rodent Model of Huntington's Disease. Experimental Neurology, 2000, 163, 85-97.	2.0	42
261	Caspase Inhibition Increases Embryonic Striatal Graft Survival. Experimental Neurology, 2000, 164, 112-120.	2.0	20
262	Unilateral lesions of the medial agranular cortex impair responding on a lateralised reaction time task. Behavioural Brain Research, 2000, 111, 139-151.	1.2	15
263	Dissecting Embryonic Neural Tissues for Transplantation. Neuromethods, 2000, , 3-25.	0.2	20
264	Basic Transplantation Methods in Rodent Brain. Neuromethods, 2000, , 133-148.	0.2	3
265	Operant Analysis of Striatal Dysfunction. , 2000, , 249-273.		0
266	The 3-Nitropropionic Acid Model of Huntington's Disease. , 2000, , 141-156.		0
267	Characterization of Progressive Motor Deficits in Mice Transgenic for the Human Huntington's Disease Mutation. Journal of Neuroscience, 1999, 19, 3248-3257.	1.7	864
268	Selective Discrimination Learning Impairments in Mice Expressing the Human Huntington's Disease Mutation. Journal of Neuroscience, 1999, 19, 10428-10437.	1.7	355
269	A Glial Cell Line-Derived Neurotrophic Factor-Secreting Clone of the Schwann Cell Line SCTM41 Enhances Survival and Fiber Outgrowth from Embryonic Nigral Neurons Grafted to the Striatum and to the Lesioned Substantia Nigra. Journal of Neuroscience, 1999, 19, 2301-2312.	1.7	95
270	Associative plasticity in striatal transplants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10524-10529.	3.3	77

#	Article	IF	CITATIONS
271	The intrinsic specification of \hat{I}^3 -aminobutyric acid type A receptor $\hat{I}^{\pm}6$ subunit gene expression in cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 2194-2198.	1.2	13
272	Subthalamic nucleus lesions induce deficits as well as benefits in the hemiparkinsonian rat. European Journal of Neuroscience, 1999, 11, 2749-2757.	1.2	69
273	Myelination and behaviour of tenascin-C null transgenic mice. European Journal of Neuroscience, 1999, 11, 3082-3092.	1.2	58
274	Dopamine cells in nigral grafts differentiate prior to implantation. European Journal of Neuroscience, 1999, 11, 4341-4348.	1.2	57
275	Repair of the damaged brain. The Alfred Meyer Memorial Lecture 1998. Neuropathology and Applied Neurobiology, 1999, 25, 351-362.	1.8	11
276	Functional integration of neural grafts in Parkinson's disease. Nature Neuroscience, 1999, 2, 1047-1048.	7.1	47
277	Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399, A32-A39.	13.7	442
278	Behavioural recovery following striatal transplantation: effects of postoperative training and P-zone volume. Experimental Brain Research, 1999, 128, 535-538.	0.7	38
279	Addition of Fresh Blood to Intrastriatal Grafts of Embryonic Mesencephalon into the Hemiparkinsonian Rat Does Not Impair the Survival of Grafted Dopaminergic Neurones. Experimental Neurology, 1999, 156, 205-208.	2.0	2
280	"Highlights of Twentieth Century Neuroscience―Brain Research Bulletin, special last issue for 1999. Brain Research Bulletin, 1999, 50, 301.	1.4	1
281	Ivan Divac and the neostriatum as a cognitive structure. Brain Research Bulletin, 1999, 50, 429-430.	1.4	3
282	Medial prefrontal and neostriatal lesions disrupt performance in an operant delayed alternation task in rats. Behavioural Brain Research, 1999, 106, 13-28.	1.2	77
283	Effects of regional striatal lesions on motor, motivational, and executive aspects of progressive-ratio performance in rats Behavioral Neuroscience, 1999, 113, 718-731.	0.6	74
284	Distinct roles for striatal subregions in mediating response processing revealed by focal excitotoxic lesions Behavioral Neuroscience, 1999, 113, 253-264.	0.6	31
285	Fetal Porcine Dopaminergic Cell Survival in Vitro and its Relationship to Embryonic Age. Cell Transplantation, 1999, 8, 593-599.	1.2	16
286	Delayed implantation of nigral grafts improves survival of dopamine neurones and rate of functional recovery. NeuroReport, 1999, 10, 1263-1267.	0.6	24
287	THE REJECTION OF NEURAL XENOTRANSPLANTS: A ROLE FOR ANTIBODIES?. Transplantation, 1999, 68, 1091-1092.	0.5	5
288	Differential effects of ventral and regional dorsal striatal lesions on sucrose drinking and positive and negative contrast in rats. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 267-276.	1.2	16

#	Article	IF	Citations
289	Functional integration of striatal allografts in a primate model of Huntington's disease. Nature Medicine, 1998, 4, 727-729.	15.2	153
290	Behavioural effects of subthalamic nucleus lesions in the hemiparkinsonian marmoset (Callithrix) Tj ETQq0 0 0 r	gBT ₁ /Overl	ock 10 Tf 50
291	The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. European Journal of Neuroscience, 1998, 10, 1835-1845.	1.2	45
292	A lateralised grip strength test to evaluate unilateral nigrostriatal lesions in rats. Neuroscience Letters, 1998, 246, 1-4.	1.0	56
293	Targeting the subthalamic nucleus in the treatment of Parkinson's disease. Brain Research Bulletin, 1998, 46, 467-474.	1.4	33
294	Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Research Bulletin, 1998, 46, 487-493.	1.4	43
295	Striatal grafts alleviate deficits in response execution in a lateralised reaction time task. Brain Research Bulletin, 1998, 47, 585-593.	1.4	29
296	Effects of surgical anaesthesia on the viability of nigral grafts in the rat striatum. Cell Transplantation, 1998, 7, 567-572.	1.2	2
297	The development of intracerebral cell-suspension implants is influenced by the grafting medium. Cell Transplantation, 1998, 7, 573-583.	1.2	7
298	Striatal Transplantation in a Transgenic Mouse Model of Huntington's Disease. Experimental Neurology, 1998, 154, 31-40.	2.0	113
299	Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention. Journal of Neurosurgery, 1998, 89, 267-274.	0.9	31
300	3-nitropropionic acid-induced changes in the expression of metabolic and astrocyte mRNAs. NeuroReport, 1998, 9, 2881-2886.	0.6	13
301	The Development of Intracerebral Cell-Suspension Implants is Influenced by the Grafting Medium. Cell Transplantation, 1998, 7, 573-583.	1.2	21
302	Topographic Factors Affecting the Functional Viability of Dopamine-Rich Grafts in the Neostriatum. , 1998, , 135-169.		1
303	Neuronal cell transplantation for Parkinson's and Huntington's diseases. British Medical Bulletin, 1997, 53, 757-776.	2.7	39
304	Nigral transplantation. NeuroReport, 1997, 8, i-ii.	0.6	46
305	Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically on donor embryo age. Cell Transplantation, 1997, 6, 557-569.	1.2	34
306	Long-Term Survival of Human Central Nervous System Progenitor Cells Transplanted into a Rat Model of Parkinson's Disease. Experimental Neurology, 1997, 148, 135-146.	2.0	409

#	Article	IF	Citations
307	Basic neural transplantation techniques. I. Dissociated cell suspension grafts of embryonic ventral mesencephalon in the adult rat brain. Brain Research Protocols, 1997, 1, 91-99.	1.7	41
308	Unilateral striatal lesions impair response execution on a lateralised choice reaction time task. Behavioural Brain Research, 1997, 87, 159-171.	1.2	24
309	The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain Neuroscience, 1997, 79, 695-710.	1.1	53
310	The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. Neuroscience, 1997, 79, 711-721.	1.1	101
311	Unilateral Lesions of the Dorsal Striatum in Rats Disrupt Responding in Egocentric Space. Journal of Neuroscience, 1997, 17, 8919-8926.	1.7	97
312	Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Developmental Brain Research, 1997, 98, 291-295.	2.1	51
313	A comparative study of preparation techniques for improving the viability of striatal grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation, 1996, 5, 599-611.	1.2	24
314	Functional and anatomical reconstruction of the 6-hydroxydopamine lesioned nigrostriatal system of the adult rat. Neuroscience, 1996, 71, 913-925.	1.1	53
315	Bridge grafts of fibroblast growth factor-4-secreting schwannoma cells promote functioal axonal regeneration in the nigrostriatal pathway of the adult rat. Neuroscience, 1996, 74, 775-784.	1.1	36
316	Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience, 1996, 75, 19-27.	1.1	75
317	Bilateral striatal lesions impair retention of an operant test of short-term memory. Brain Research Bulletin, 1996, 41, 159-165.	1.4	18
318	Expression of c-fos, jun D and pp60c - src + mRNAs in the developing and grafted rat striatum. Molecular Brain Research, 1996, 41, 90-96.	2.5	4
319	Survival and Differentiation of Rat and Human Epidermal Growth Factor-Responsive Precursor Cells Following Grafting into the Lesioned Adult Central Nervous System. Experimental Neurology, 1996, 137, 376-388.	2.0	286
320	The Time Course of Loss of Dopaminergic Neurons and the Gliotic Reaction Surrounding Grafts of Embryonic Mesencephalon to the Striatum. Experimental Neurology, 1996, 141, 79-93.	2.0	187
321	The Placement of a Striatal Ibotenic Acid Lesion Affects Skilled Forelimb Use and the Direction of Drug-Induced Rotation. Brain Research Bulletin, 1996, 41, 409-416.	1.4	70
322	GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. NeuroReport, 1996, 7, 2547-2552.	0.6	139
323	The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson's disease. Brain Research, 1996, 712, 45-52.	1.1	71
324	Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Experimental Brain Research, 1996, 112, 47-57.	0.7	27

#	Article	IF	CITATIONS
325	Selective Immunolesioning of the Basal Forebrain Cholinergic System Disrupts Short-term Memory in Rats. European Journal of Neuroscience, 1996, 8, 1535-1544.	1.2	111
326	Assessment of striatal graft viability in the rat in vivo using a small diameter PET scanner. NeuroReport, 1995, 6, 2017-2021.	0.6	51
327	In vivo effects of kFGF on embryonic nigral grafts in a rat model of ParkinsonÊ⅓s disease. NeuroReport, 1995, 6, 2177-2181.	0.6	7
328	Multiple potential mechanisms of graft action is not a new idea. Behavioral and Brain Sciences, 1995, 18, 56-57.	0.4	1
329	Elegant studies of transplant-derived repair of cognitive performance. Behavioral and Brain Sciences, 1995, 18, 57-57.	0.4	0
330	Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Experimental Brain Research, 1995, 102, 407-14.	0.7	122
331	Embryonic striatal grafts reverse the disinhibitory effects of ibotenic acid lesions of the ventral striatum. Experimental Brain Research, 1995, 105, 76-86.	0.7	33
332	Acetylcholine revisited. Nature, 1995, 375, 446-446.	13.7	15
333	Barrier breaker. Nature, 1995, 377, 267-268.	13.7	0
334	Embryonic Striatal Grafting: Progress and Future Directions for Therapeutic Approaches to Neurodegenerative Diseases of the Basal Ganglia. Frontiers of Neurology and Neuroscience, 1995, 14, 225-234.	3.0	0
335	The effects of bilateral striatal lesions on the acquisition of an operant test of short term memory. NeuroReport, 1995, 6, 2049-2053.	0.6	19
336	Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behavioural Brain Research, 1995, 66, 133-142.	1.2	79
337	A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation, 1995, 4, 173-200.	1.2	51
338	A quantitative study of cell death in the substantia nigra following a mechanical lesion of the medial forebrain bundle. Neuroscience, 1995, 64, 219-227.	1.1	44
339	Spontaneous response tendencies in noncontingent trials of a matching-to-position task in rats: Consequences for learning the matching and nonmatching task contingencies. Cognitive, Affective and Behavioral Neuroscience, 1995, 23, 76-84.	1.2	5
340	Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Experimental Brain Research, 1994, 101, 365-74.	0.7	41
341	Behavioural consequences of neural transplantation. Journal of Neurology, 1994, 242, S43-S53.	1.8	15
342	Behavioral assessment of the ability of intracerebral embryonic neural tissue grafts to ameliorate the effects of brain damage in marmosets. Molecular Neurobiology, 1994, 9, 207-223.	1.9	3

#	Article	IF	CITATIONS
343	Behavioral Assessment of the Effects of Embryonic Nigral Grafts in Marmosets with Unilateral 6-OHDA Lesions of the Nigrostriatal Pathway. Experimental Neurology, 1994, 125, 228-246.	2.0	96
344	Internal Composition of Striatal Grafts: Light and Electron Microscopy. Advances in Behavioral Biology, 1994, , 189-196.	0.2	10
345	Factors Important in the Survival of Dopamine Neurons in Intracerebral Grafts of Embryonic Substantia Nigra. Methods in Neurosciences, 1994, 21, 237-252.	0.5	2
346	Conditioning versus priming of dopaminergic grafts by amphetamine. Experimental Brain Research, 1993, 93, 46-54.	0.7	21
347	Neurotrophic factors and neural grafts: a growing field. Seminars in Neuroscience, 1993, 5, 431-441.	2.3	11
348	Immunohistochemical Identification of Rat Adrenal Cortical Tissue in Situ, in Vitro, and in Intracerebral Adrenal Grafts. Experimental Neurology, 1993, 122, 125-129.	2.0	2
349	Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—ll. Effects on nigral transplantsin vivo. Neuroscience, 1993, 56, 389-398.	1.1	116
350	Huntington's disease: animal models and transplantation repair. Current Opinion in Neurobiology, 1993, 3, 790-796.	2.0	36
351	Dopamine-rich grafts in the neostriatum and/or nucleus accumbens: Effects on drug-induced behaviours and skilled paw-reaching. Neuroscience, 1993, 53, 187-197.	1.1	63
352	Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—i. Effectsin vitro. Neuroscience, 1993, 56, 379-388.	1.1	107
353	Cholecystokinin-dependent regulation of host dopamine inputs to striatal grafts. Neuroscience, 1993, 53, 651-663.	1.1	22
354	Dopaminergic grafts implanted into the neonatal or adult striatum: Comparative effects on rotation and paw reaching deficits induced by subsequent unilateral nigrostriatal lesions in adulthood. Neuroscience, 1993, 54, 657-668.	1.1	49
355	A novel population of tyrosine hydroxylase immunoreactive neurones in the basal forebrain of the common marmoset (Callithrix jacchus). Neuroscience Letters, 1993, 150, 29-32.	1.0	20
356	Synaptic relationships between cortical and dopaminergic inputs and intrinsic GABAergic systems within intrastriatal striatal grafts. Journal of Chemical Neuroanatomy, 1993, 6, 147-158.	1.0	49
357	Intrastriatal grafts derived from fetal striatal primordia—IV. Host and donor neurons are not intermixed. Neuroscience, 1993, 55, 363-372.	1.1	12
358	Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neurone precursors. Developmental Brain Research, 1993, 72, 253-258.	2.1	59
359	Unilateral dopamine lesions in neonatal, weanling and adult rats: comparison of rotation and reaching deficits. Behavioural Brain Research, 1992, 51, 67-75.	1.2	27
360	THE FUNCTIONAL ROLE OF MESOTELENCEPHALIC DOPAMINE SYSTEMS. Biological Reviews, 1992, 67, 491-518.	4.7	120

#	Article	IF	CITATIONS
361	Intrastriatal dopamine-rich grafts induce a hyperexpression of Fos protein when challenged with amphetamine. Experimental Brain Research, 1992, 91, 181-90.	0.7	34
362	The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends in Neurosciences, 1991, 14, 494-501.	4.2	440
363	Cholinergic grafts, memory and ageing. Trends in Neurosciences, 1991, 14, 371-376.	4.2	67
364	Increased proenkephalin mRNA levels in the rat neostriatum following lesion of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylpyridinium ion (MPP+): reversal by embryonic nigral dopamine grafts. Molecular Brain Research, 1991, 9, 263-269.	2.5	38
365	Serotonin hyperinnervation after foetal nigra or raphe transplantation in the neostriatum of adult rats. Neuroscience Letters, 1991, 128, 281-284.	1.0	17
366	Interactions between meningeal cells and astrocytes in vivo and in vitro. Developmental Brain Research, 1991, 59, 187-196.	2.1	75
367	Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behavioural Brain Research, 1991, 45, 147-161.	1.2	191
368	The effects of excitotoxic lesions of the nucleus accumbens on a matching to position task. Behavioural Brain Research, 1991, 46, 17-29.	1.2	63
369	Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. NeuroReport, 1991, 2, 781-784.	0.6	88
370	Neural transplants as a treatment for Alzheimer's disease?. Psychological Medicine, 1991, 21, 825-830.	2.7	43
371	The "staircase test― a measure of independent forelimb reaching and grasping abilities in rats. Journal of Neuroscience Methods, 1991, 36, 219-228.	1.3	571
372	Chapter 13 Is it possible to repair the damaged prefrontal cortex by neural tissue transplantation?. Progress in Brain Research, 1991, 85, 285-297.	0.9	12
373	Response disinhibition on a delayed matching to position task induced by amphetamine, nicotine and age. Psychopharmacology, 1991, 104, 137-139.	1.5	9
374	Transplantation of embryonic dopamine neurons: what we know from rats. Journal of Neurology, 1991, 238, 65-74.	1.8	58
375	Cholinergic blockade in prefrontal cortex and hippocampus disrupts short-term memory in rats. NeuroReport, 1990, 1, 61-64.	0.6	94
376	Proactive interference effects on short-term memory in rats: I. Basic parameters and drug effects Behavioral Neuroscience, 1990, 104, 655-665.	0.6	126
377	Proactive interference effects on short-term memory in rats: II. Effects in young and aged rats Behavioral Neuroscience, 1990, 104, 666-670.	0.6	50
378	Chapter 43 Identification of grafted neurons with fluorescent-labelled microbeads. Progress in Brain Research, 1990, 82, 385-390.	0.9	9

#	Article	IF	Citations
379	Chapter 46 Ultrastructural organization within intrastriatal striatal grafts. Progress in Brain Research, 1990, 82, 407-415.	0.9	7
380	Chapter 55 Nigral grafts in neonatal rats: protection from aphagia induced by subsequent adult 6-OHDA lesions. Progress in Brain Research, 1990, 82, 489-492.	0.9	4
381	Neural Transplantation in Animal Models of Dementia. European Journal of Neuroscience, 1990, 2, 567-587.	1.2	120
382	Functional organization of striatum as studied with neural grafts. Neuropsychologia, 1990, 28, 601-626.	0.7	30
383	Intrastriatal grafts derived from fetal striatal primordia: II. Reconstitution of cholinergic and dopaminergic systems. Journal of Comparative Neurology, 1990, 295, 1-14.	0.9	69
384	Role of prefrontal cortex and striatal output systems in short-term memory deficits associated with ageing, basal forebrain lesions, and cholinergic-rich grafts Canadian Journal of Psychology, 1990, 44, 210-232.	0.8	126
385	Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway—III. Reversal by embryonic nigral dopamine grafts. Neuroscience, 1990, 37, 757-766.	1.1	19
386	Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron, 1990, 4, 603-614.	3.8	657
387	Gene expression in striatal grafts—I. Cellular localization of neurotransmitter mRNAs. Neuroscience, 1990, 34, 675-686.	1.1	72
388	Functional Analysis of Neural Grafts in the Neostriatum. , 1990, , 355-373.		7
389	Effects of Nucleus Basalis Magnocellularis Lesions in Rats on Delayed Matching and Non-Matching to Position Tasks. Disruption of Conditional Discrimination Learning But Not of Short-Term Memory. European Journal of Neuroscience, 1989, 1, 395-406.	1.2	85
390	Cellular localisation of somatostatin mRNA and neuropeptide Y mRNA in foetal striatal tissue grafts. Neuroscience Letters, 1989, 103, 121-126.	1.0	9
391	Functional compensation afforded by grafts of foetal neurones. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1989, 13, 453-467.	2.5	6
392	Monoclonal antibody g10 against microtubule-associated protein $1\mathrm{x}$ distinguishes between growing and regenerating axons. Neuroscience, 1989, 28, 49-59.	1.1	31
393	Neonatal dopamine-rich grafts and 6-OHDA lesions independently provide partial protection from the adult nigrostriatal lesion syndrome. Behavioural Brain Research, 1989, 34, 131-146.	1.2	28
394	Monoamine deficiency in a transgenic (Hprtâ^') mouse model of Lesch-Nyhan syndrome. Brain Research, 1989, 501, 401-406.	1.1	66
395	Disappearance of the \hat{l} 4-opiate receptor patches in the rat neostriatum following lesioning of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylphyridinium ion (MPP+): restoration by embryonic nigral dopamine grafts. Brain Research, 1989, 504, 115-120.	1.1	35
396	Nimodipine enhances growth and vascularization of neural grafts. Experimental Neurology, 1989, 104, 1-9.	2.0	51

#	Article	IF	Citations
397	Age-related impairments in spatial memory are independent of those in sensorimotor skills. Neurobiology of Aging, 1989, 10, 347-352.	1.5	135
398	Trophic mechanisms are not enough. Trends in Neurosciences, 1989, 12, 257.	4.2	3
399	Hypersensitivity to \hat{l} ±-methyl-p-tyrosine suggests that behavioural recovery of rats receiving neonatal 6-OHDA lesions is mediated by residual catecholamine neurones. Neuroscience Letters, 1989, 102, 108-113.	1.0	31
400	Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research, 1988, 463, 192-197.	1.1	129
401	Cholinergic grafts in the neocortex or hippocampus of aged rats: Reduction of delay-dependent deficits in the delayed non-matching to position task. Experimental Neurology, 1988, 102, 57-64.	2.0	111
402	Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome. Journal of the Neurological Sciences, 1988, 86, 203-213.	0.3	115
403	Striatal grafts in rats with unilateral neostriatal lesionsâ€"III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience, 1988, 24, 813-820.	1.1	204
404	Striatal grafts in rats with unilateral neostriatal lesionsâ€"II. In vivo monitoring of gaba release in globus pallidus and substantia nigra. Neuroscience, 1988, 24, 803-811.	1.1	127
405	Striatal grafts in rats with unilateral neostriatal lesions—I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience, 1988, 24, 791-801.	1.1	143
406	Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions Behavioral Neuroscience, 1987, 101, 489-503.	0.6	111
407	Anatomical and Behavioral Consequences of Cholinergic-rich Grafts to the Neocortex of Rats with Lesions of the Nucleus Basalis Magnocellularis. Annals of the New York Academy of Sciences, 1987, 495, 415-429.	1.8	24
408	Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Research, 1987, 415, 63-78.	1.1	290
409	Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neurosciences, 1987, 10, 509-516.	4.2	328
410	Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behavioural Brain Research, 1987, 24, 125-138.	1.2	254
411	Electrophysiological demonstration of host cortical inputs to striatal grafts. Neuroscience Letters, 1987, 83, 275-281.	1.0	83
412	Decreased brown adipose tissue thermogenic activity following a reduction in brain serotonin by intraventricular p-chlorophenylalanine. Bioscience Reports, 1987, 7, 121-127.	1.1	19
413	Specificity of cerebellar grafts. Nature, 1987, 327, 366-367.	13.7	5
414	Conditions for Neuronal Survival and Growth as Assessed by the Intracerebral Transplantation Technique in Lesion Models of the Adult CNS., 1987,, 529-544.		3

#	Article	IF	Citations
415	THE CONTRIBUTIONS OF MOTOR CORTEX, NIGROSTRIATAL DOPAMINE AND CAUDATE-PUTAMEN TO SKILLED FORELIMB USE IN THE RAT. Brain, 1986, 109, 805-843.	3.7	441
416	Effects of dopamine-rich grafts on conditioned rotation in rats with unilateral 6-hydroxydopamine lesions. Neuroscience Letters, 1986, 68, 127-133.	1.0	41
417	In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Research, 1986, 362, 344-349.	1.1	193
418	Acetylcholine-rich neuronal grafts in the forebrain of rats: Effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site and regional source of embryonic donor cells on graft size and acetylcholinesterase-positive fibre outgrowth. Brain Research, 1986, 378, 357-373.	1.1	157
419	Ultrastructural organization of choline acetyltransferase-immunoreactive fibres innervating the neocortex from embryonic ventral forebrain grafts. Journal of Comparative Neurology, 1986, 250, 192-205.	0.9	126
420	Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology, 1985, 87, 357-363.	1.5	551
421	Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behavioural Brain Research, 1985, 18, 11-29.	1.2	124
422	Disruption of central cholinergic systems in the rat by basal forebrain lesions or atropine: Effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation. Behavioural Brain Research, 1985, 17, 103-115.	1.2	239
423	Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis—II. Sensorimotor and learning impairments. Neuroscience, 1985, 16, 787-797.	1.1	293
424	Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neuroscience Letters, 1985, 57, 205-210.	1.0	175
425	Ibotenic acid lesions of the lateral hypothalamus: Comparison with 6-hydroxydopamine-induced sensorimotor deficits. Neuroscience, 1985, 14, 509-518.	1.1	53
426	Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis—I. Biochemical and anatomical observations. Neuroscience, 1985, 16, 769-786.	1.1	85
427	Acetylcholine-rich transplants in the hippocampus: influence of intrinsic growth factors and application of nerve growth factor on choline acetyltransferase activity. Brain Research, 1985, 345, 141-146.	1.1	46
428	Neurotoxic amino acid lesions of the lateral hypothalamus: a parametric comparison of the effects of ibotenate, N-methyl-d,l-aspartate and quisqualate in the rat. Brain Research, 1985, 360, 248-256.	1.1	77
429	Fluorescent histochemical demonstration of catecholamines in brown adipose tissue from obese (ob/ob) and lean mice acclimated at different temperatures. Journal of the Autonomic Nervous System, 1985, 14, 377-386.	1.9	12
430	Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 1984, 5, 43-48.	1.5	466
431	Dopamine-rich transplants in rats with 6-OHDA lesions of the ventral tegmental area. I. Effects on spontaneous and drug-induced locomotor activity. Behavioural Brain Research, 1984, 13, 71-82.	1.2	64
432	Ibotenic acid lesions of the lateral hypothalamus: Comparison with the electrolytic lesion syndrome. Neuroscience, 1984, 12, 225-240.	1.1	128

#	Article	IF	CITATIONS
433	Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum: Evidence for selective growth regulation. Neuroscience, 1984, 12, 17-32.	1.1	93
434	Conditioned turning in rats: Dopaminergic involvement in the initiation of movement rather than the movement itself. Neuroscience Letters, 1983, 41, 173-178.	1.0	50
435	Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation. Brain Research, 1983, 268, 39-47.	1.1	128
436	Dopamine-rich transplants in experimental parkinsonism. Trends in Neurosciences, 1983, 6, 266-270.	4.2	47
437	Intracerebral Grafting of Embryonic Neural Cells into the Adult Host Brain: an Overview of the Cell Suspension Method and Its Application. Developmental Neuroscience, 1983, 6, 137-151.	1.0	31
438	INTRACEREBRAL GRAFTING OF DISSOCIATED CNS TISSUE SUSPENSIONS. , 1983, , 325-357.		14
439	Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Research, 1982, 251, 335-348.	1.1	461
440	Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum. Brain Research, 1982, 248, 121-127.	1.1	288
441	Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesions of the neostriatum. Neuropharmacology, 1982, 21, 899-908.	2.0	48
442	Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behavioural Brain Research, 1982, 6, 213-226.	1.2	63
443	Regulatory impairments following selective 6-OHDA lesions of the neostriatum. Behavioural Brain Research, 1982, 4, 195-202.	1.2	51
444	Cross-species neural grafting in a rat model of Parkinson's disease. Nature, 1982, 298, 652-654.	13.7	191
445	Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature, 1982, 300, 260-262.	13.7	321
446	Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Research, 1981, 215, 147-161.	1.1	401
447	Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Research, 1981, 229, 209-217.	1.1	268
448	Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. II. Bilateral lesions. Brain Research, 1981, 229, 457-470.	1.1	121
449	Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behavioural Brain Research, 1981, 2, 189-209.	1.2	203
450	Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Research, 1980, 199, 307-333.	1.1	546

STEPHEN B DUNNETT

#	Article	IF	CITATIONS
451	Regulatory impairments following selective kainic acid lesions of the neostriatum. Behavioural Brain Research, 1980, 1, 497-506.	1.2	57
452	Functional reinnervation of the denervated neostriatum by nigral transplants. Peptides, 1980, 1, 111-116.	1.2	45
453	Neural transplantation., 0,, 269-308.		1