Stephen B Dunnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055320/publications.pdf Version: 2024-02-01

STEDHEN R DUNNETT

#	Article	IF	CITATIONS
1	Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 2007, 30, 194-202.	8.6	1,414
2	Characterization of Progressive Motor Deficits in Mice Transgenic for the Human Huntington's Disease Mutation. Journal of Neuroscience, 1999, 19, 3248-3257.	3.6	864
3	Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron, 1990, 4, 603-614.	8.1	657
4	The "staircase test― a measure of independent forelimb reaching and grasping abilities in rats. Journal of Neuroscience Methods, 1991, 36, 219-228.	2.5	571
5	Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology, 1985, 87, 357-363.	3.1	551
6	Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Research, 1980, 199, 307-333.	2.2	546
7	Tests to assess motor phenotype in mice: a user's guide. Nature Reviews Neuroscience, 2009, 10, 519-529.	10.2	513
8	Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 1984, 5, 43-48.	3.1	466
9	Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Research, 1982, 251, 335-348.	2.2	461
10	Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399, A32-A39.	27.8	442
11	THE CONTRIBUTIONS OF MOTOR CORTEX, NIGROSTRIATAL DOPAMINE AND CAUDATE-PUTAMEN TO SKILLED FORELIMB USE IN THE RAT. Brain, 1986, 109, 805-843.	7.6	441
12	The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends in Neurosciences, 1991, 14, 494-501.	8.6	440
13	Long-Term Survival of Human Central Nervous System Progenitor Cells Transplanted into a Rat Model of Parkinson's Disease. Experimental Neurology, 1997, 148, 135-146.	4.1	409
14	Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Research, 1981, 215, 147-161.	2.2	401
15	Abnormal Synaptic Plasticity and Impaired Spatial Cognition in Mice Transgenic for Exon 1 of the Human Huntington's Disease Mutation. Journal of Neuroscience, 2000, 20, 5115-5123.	3.6	366
16	Selective Discrimination Learning Impairments in Mice Expressing the Human Huntington's Disease Mutation. Journal of Neuroscience, 1999, 19, 10428-10437.	3.6	355
17	Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neurosciences, 1987, 10, 509-516.	8.6	328
18	Neural transplantation for the treatment of Parkinson's disease. Lancet Neurology, The, 2003, 2, 437-445.	10.2	322

#	Article	IF	CITATIONS
19	Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature, 1982, 300, 260-262.	27.8	321
20	Motor Coordination and Balance in Rodents. Current Protocols in Neuroscience, 2001, 15, 8.12.1-8.12.14.	2.6	306
21	Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861.	2.9	304
22	Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis—II. Sensorimotor and learning impairments. Neuroscience, 1985, 16, 787-797.	2.3	293
23	Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Research, 1987, 415, 63-78.	2.2	290
24	Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum. Brain Research, 1982, 248, 121-127.	2.2	288
25	Survival and Differentiation of Rat and Human Epidermal Growth Factor-Responsive Precursor Cells Following Grafting into the Lesioned Adult Central Nervous System. Experimental Neurology, 1996, 137, 376-388.	4.1	286
26	Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Research, 1981, 229, 209-217.	2.2	268
27	Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behavioural Brain Research, 1987, 24, 125-138.	2.2	254
28	Disruption of central cholinergic systems in the rat by basal forebrain lesions or atropine: Effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation. Behavioural Brain Research, 1985, 17, 103-115.	2.2	239
29	Drug repositioning for Alzheimer's disease. Nature Reviews Drug Discovery, 2012, 11, 833-846.	46.4	239
30	Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. Journal of Neuroscience Methods, 2006, 158, 219-223.	2.5	223
31	Cell therapy in Parkinson's disease – stop or go?. Nature Reviews Neuroscience, 2001, 2, 365-369.	10.2	219
32	Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease. Cell Stem Cell, 2017, 20, 135-148.	11.1	215
33	Striatal grafts in rats with unilateral neostriatal lesions—III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience, 1988, 24, 813-820.	2.3	204
34	Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behavioural Brain Research, 1981, 2, 189-209.	2.2	203
35	Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain, 2003, 126, 1127-1135.	7.6	201
36	In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Research, 1986, 362, 344-349.	2.2	193

#	Article	IF	CITATIONS
37	Cross-species neural grafting in a rat model of Parkinson's disease. Nature, 1982, 298, 652-654.	27.8	191
38	Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behavioural Brain Research, 1991, 45, 147-161.	2.2	191
39	The Time Course of Loss of Dopaminergic Neurons and the Gliotic Reaction Surrounding Grafts of Embryonic Mesencephalon to the Striatum. Experimental Neurology, 1996, 141, 79-93.	4.1	187
40	Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neuroscience Letters, 1985, 57, 205-210.	2.1	175
41	Unilateral transplantation of human primary fetal tissue in four patients with Huntington's disease: NEST-UK safety report ISRCTN no 36485475. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 678-685.	1.9	164
42	Acetylcholine-rich neuronal grafts in the forebrain of rats: Effects of environmental enrichment, neonatal noradrenaline depletion, host transplantation site and regional source of embryonic donor cells on graft size and acetylcholinesterase-positive fibre outgrowth. Brain Research, 1986, 378, 357-373	2.2	157
43	Functional integration of striatal allografts in a primate model of Huntington's disease. Nature Medicine, 1998, 4, 727-729.	30.7	153
44	Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development (Cambridge), 2013, 140, 301-312.	2.5	146
45	Striatal grafts in rats with unilateral neostriatal lesions—I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience, 1988, 24, 791-801.	2.3	143
46	GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. NeuroReport, 1996, 7, 2547-2552.	1.2	139
47	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: cognitive tests. Genes, Brain and Behavior, 2005, 4, 307-317.	2.2	139
48	Age-related impairments in spatial memory are independent of those in sensorimotor skills. Neurobiology of Aging, 1989, 10, 347-352.	3.1	135
49	Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development (Cambridge), 2015, 142, 1375-1386.	2.5	134
50	Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research, 1988, 463, 192-197.	2.2	129
51	Survival, Neuronal Differentiation, and Fiber Outgrowth of Propagated Human Neural Precursor Grafts in an Animal Model of Huntington's Disease. Cell Transplantation, 2000, 9, 55-64.	2.5	129
52	Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation. Brain Research, 1983, 268, 39-47.	2.2	128
53	lbotenic acid lesions of the lateral hypothalamus: Comparison with the electrolytic lesion syndrome. Neuroscience, 1984, 12, 225-240.	2.3	128
54	Striatal grafts in rats with unilateral neostriatal lesions—II. In vivo monitoring of gaba release in globus pallidus and substantia nigra. Neuroscience, 1988, 24, 803-811.	2.3	127

#	Article	IF	CITATIONS
55	Ultrastructural organization of choline acetyltransferase-immunoreactive fibres innervating the neocortex from embryonic ventral forebrain grafts. Journal of Comparative Neurology, 1986, 250, 192-205.	1.6	126
56	Proactive interference effects on short-term memory in rats: I. Basic parameters and drug effects Behavioral Neuroscience, 1990, 104, 655-665.	1.2	126
57	Role of prefrontal cortex and striatal output systems in short-term memory deficits associated with ageing, basal forebrain lesions, and cholinergic-rich grafts Canadian Journal of Psychology, 1990, 44, 210-232.	0.8	126
58	Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behavioural Brain Research, 1985, 18, 11-29.	2.2	124
59	Observing Huntington's Disease: the European Huntington's Disease Network's REGISTRY. PLOS Currents, 2010, 2, RRN1184.	1.4	124
60	Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behavioural Brain Research, 2006, 171, 116-126.	2.2	123
61	Increased survival of rat ECF-generated CNS precursor cells using B27 supplemented medium. Experimental Brain Research, 1995, 102, 407-14.	1.5	122
62	Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. II. Bilateral lesions. Brain Research, 1981, 229, 457-470.	2.2	121
63	Neural Transplantation in Animal Models of Dementia. European Journal of Neuroscience, 1990, 2, 567-587.	2.6	120
64	THE FUNCTIONAL ROLE OF MESOTELENCEPHALIC DOPAMINE SYSTEMS. Biological Reviews, 1992, 67, 491-518.	10.4	120
65	Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—II. Effects on nigral transplantsin vivo. Neuroscience, 1993, 56, 389-398.	2.3	116
66	Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome. Journal of the Neurological Sciences, 1988, 86, 203-213.	0.6	115
67	Striatal Transplantation in a Transgenic Mouse Model of Huntington's Disease. Experimental Neurology, 1998, 154, 31-40.	4.1	113
68	Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions Behavioral Neuroscience, 1987, 101, 489-503.	1.2	111
69	Cholinergic grafts in the neocortex or hippocampus of aged rats: Reduction of delay-dependent deficits in the delayed non-matching to position task. Experimental Neurology, 1988, 102, 57-64.	4.1	111
70	Selective Immunolesioning of the Basal Forebrain Cholinergic System Disrupts Short-term Memory in Rats. European Journal of Neuroscience, 1996, 8, 1535-1544.	2.6	111
71	The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neuroscience and Biobehavioral Reviews, 2012, 36, 1030-1042.	6.1	111
72	Fifty years of dopamine research. Trends in Neurosciences, 2007, 30, 185-187.	8.6	109

#	Article	IF	CITATIONS
73	Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—i. Effectsin vitro. Neuroscience, 1993, 56, 379-388.	2.3	107
74	Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 2001, 13, 1609-1616.	2.6	106
75	The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. Neuroscience, 1997, 79, 711-721.	2.3	101
76	Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiology of Disease, 2009, 33, 358-368.	4.4	101
77	Unilateral Lesions of the Dorsal Striatum in Rats Disrupt Responding in Egocentric Space. Journal of Neuroscience, 1997, 17, 8919-8926.	3.6	97
78	Behavioral Assessment of the Effects of Embryonic Nigral Grafts in Marmosets with Unilateral 6-OHDA Lesions of the Nigrostriatal Pathway. Experimental Neurology, 1994, 125, 228-246.	4.1	96
79	A Glial Cell Line-Derived Neurotrophic Factor-Secreting Clone of the Schwann Cell Line SCTM41 Enhances Survival and Fiber Outgrowth from Embryonic Nigral Neurons Grafted to the Striatum and to the Lesioned Substantia Nigra. Journal of Neuroscience, 1999, 19, 2301-2312.	3.6	95
80	Cholinergic blockade in prefrontal cortex and hippocampus disrupts short-term memory in rats. NeuroReport, 1990, 1, 61-64.	1.2	94
81	The staircase test of skilled reaching in mice. Brain Research Bulletin, 2001, 54, 243-250.	3.0	94
82	Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum: Evidence for selective growth regulation. Neuroscience, 1984, 12, 17-32.	2.3	93
83	Impaired Bidirectional Synaptic Plasticity and Procedural Memory Formation in Striatum-Specific cAMP Response Element-Binding Protein-Deficient Mice. Journal of Neuroscience, 2006, 26, 2808-2813.	3.6	93
84	Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the β-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience, 2004, 129, 583-592.	2.3	91
85	Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. NeuroReport, 1991, 2, 781-784.	1.2	88
86	The influence of environment and experience on neural grafts. Nature Reviews Neuroscience, 2001, 2, 871-879.	10.2	88
87	Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites. Behavioural Brain Research, 2012, 228, 30-43.	2.2	88
88	The Corridor Task: A simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatum. Brain Research Bulletin, 2005, 68, 24-30.	3.0	86
89	Transplantation of embryonic ventral forebrain neurons to the neocortex of rats with lesions of nucleus basalis magnocellularis—I. Biochemical and anatomical observations. Neuroscience, 1985, 16, 769-786.	2.3	85
90	Effects of Nucleus Basalis Magnocellularis Lesions in Rats on Delayed Matching and Non-Matching to Position Tasks. Disruption of Conditional Discrimination Learning But Not of Short-Term Memory. European Journal of Neuroscience, 1989, 1, 395-406.	2.6	85

#	Article	IF	CITATIONS
91	Chapter 11 Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Progress in Brain Research, 2000, 127, 233-265.	1.4	85
92	Lentivectorâ€mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. European Journal of Neuroscience, 2005, 22, 2587-2595.	2.6	84
93	Electrophysiological demonstration of host cortical inputs to striatal grafts. Neuroscience Letters, 1987, 83, 275-281.	2.1	83
94	Observing Huntington's disease: the European Huntington's Disease Network's REGISTRY. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1409-1412.	1.9	82
95	Phosphorylation of Parkin at serine 65 is essential for its activation <i>in vivo</i> . Open Biology, 2018, 8, 180108.	3.6	81
96	The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 657-665.	1.9	80
97	Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behavioural Brain Research, 1995, 66, 133-142.	2.2	79
98	Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I: motor tests. Genes, Brain and Behavior, 2004, 3, 206-215.	2.2	79
99	Neurotoxic amino acid lesions of the lateral hypothalamus: a parametric comparison of the effects of ibotenate, N-methyl-d,l-aspartate and quisqualate in the rat. Brain Research, 1985, 360, 248-256.	2.2	77
100	Associative plasticity in striatal transplants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10524-10529.	7.1	77
101	Medial prefrontal and neostriatal lesions disrupt performance in an operant delayed alternation task in rats. Behavioural Brain Research, 1999, 106, 13-28.	2.2	77
102	Interactions between meningeal cells and astrocytes in vivo and in vitro. Developmental Brain Research, 1991, 59, 187-196.	1.7	75
103	Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience, 1996, 75, 19-27.	2.3	75
104	Effects of regional striatal lesions on motor, motivational, and executive aspects of progressive-ratio performance in rats Behavioral Neuroscience, 1999, 113, 718-731.	1.2	74
105	Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. European Journal of Neuroscience, 2004, 19, 831-844.	2.6	74
106	Motor training effects on recovery of function after striatal lesions and striatal grafts. Experimental Neurology, 2003, 184, 274-284.	4.1	73
107	Gene expression in striatal grafts—I. Cellular localization of neurotransmitter mRNAs. Neuroscience, 1990, 34, 675-686.	2.3	72
108	The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson's disease. Brain Research, 1996, 712, 45-52.	2.2	71

#	Article	IF	CITATIONS
109	A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. European Journal of Neuroscience, 2005, 21, 855-870.	2.6	71
110	Re-examining the ontogeny of substantia nigra dopamine neurons. European Journal of Neuroscience, 2006, 23, 1384-1390.	2.6	71
111	The Placement of a Striatal Ibotenic Acid Lesion Affects Skilled Forelimb Use and the Direction of Drug-Induced Rotation. Brain Research Bulletin, 1996, 41, 409-416.	3.0	70
112	A Role for Complement in the Rejection of Porcine Ventral Mesencephalic Xenografts in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2000, 20, 3415-3424.	3.6	70
113	Intrastriatal grafts derived from fetal striatal primordia: II. Reconstitution of cholinergic and dopaminergic systems. Journal of Comparative Neurology, 1990, 295, 1-14.	1.6	69
114	Subthalamic nucleus lesions induce deficits as well as benefits in the hemiparkinsonian rat. European Journal of Neuroscience, 1999, 11, 2749-2757.	2.6	69
115	The Potential for Circuit Reconstruction by Expanded Neural Precursor Cells Explored through Porcine Xenografts in a Rat Model of Parkinson's Disease. Experimental Neurology, 2002, 175, 98-111.	4.1	69
116	Human stem cells for CNS repair. Cell and Tissue Research, 2008, 331, 301-322.	2.9	69
117	Stem cell transplantation for neurodegenerative diseases. Current Opinion in Neurology, 2007, 20, 688-692.	3.6	68
118	Cholinergic grafts, memory and ageing. Trends in Neurosciences, 1991, 14, 371-376.	8.6	67
119	Monoamine deficiency in a transgenic (Hprtâ^') mouse model of Lesch-Nyhan syndrome. Brain Research, 1989, 501, 401-406.	2.2	66
120	Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience, 2001, 106, 201-216.	2.3	66
121	Frontal-striatal disconnection disrupts cognitive performance of the frontal-type in the rat. Neuroscience, 2005, 135, 1055-1065.	2.3	66
122	Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. European Journal of Neuroscience, 2002, 15, 1255-1266.	2.6	65
123	Dopamine-rich transplants in rats with 6-OHDA lesions of the ventral tegmental area. I. Effects on spontaneous and drug-induced locomotor activity. Behavioural Brain Research, 1984, 13, 71-82.	2.2	64
124	Validation of the l-dopa-induced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Research Bulletin, 2005, 68, 16-23.	3.0	64
125	Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behavioural Brain Research, 1982, 6, 213-226.	2.2	63
126	The effects of excitotoxic lesions of the nucleus accumbens on a matching to position task. Behavioural Brain Research, 1991, 46, 17-29.	2.2	63

#	Article	IF	CITATIONS
127	Dopamine-rich grafts in the neostriatum and/or nucleus accumbens: Effects on drug-induced behaviours and skilled paw-reaching. Neuroscience, 1993, 53, 187-197.	2.3	63
128	Cell therapy in Huntington's disease. NeuroRx, 2004, 1, 394-405.	6.0	63
129	Chapter 16 The integration and function of striatal grafts. Progress in Brain Research, 2000, 127, 345-380.	1.4	62
130	The morphological development of neurons derived from EGF―and FGFâ€2â€driven human CNS precursors depends on their site of integration in the neonatal rat brain. European Journal of Neuroscience, 2000, 12, 2405-2413.	2.6	61
131	Environmental enrichment affects striatal graft morphology and functional recovery. European Journal of Neuroscience, 2004, 19, 159-168.	2.6	60
132	Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells. Biomicrofluidics, 2007, 1, 014105.	2.4	60
133	Animal models of Parkinson's disease and L-dopa induced dyskinesia: How close are we to the clinic?. Psychopharmacology, 2008, 199, 303-312.	3.1	60
134	The Amphetamine Induced Rotation Test: A Re-Assessment of Its Use as a Tool to Monitor Motor Impairment and Functional Recovery in Rodent Models of Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 17-29.	2.8	60
135	Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neurone precursors. Developmental Brain Research, 1993, 72, 253-258.	1.7	59
136	Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington's disease mouse model. Experimental Neurology, 2013, 248, 457-469.	4.1	59
137	Transplantation of embryonic dopamine neurons: what we know from rats. Journal of Neurology, 1991, 238, 65-74.	3.6	58
138	Myelination and behaviour of tenascin null transgenic mice. European Journal of Neuroscience, 1999, 11, 3082-3092.	2.6	58
139	Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington's disease. Genes, Brain and Behavior, 2008, 7, 288-299.	2.2	58
140	Regulatory impairments following selective kainic acid lesions of the neostriatum. Behavioural Brain Research, 1980, 1, 497-506.	2.2	57
141	Dopamine cells in nigral grafts differentiate prior to implantation. European Journal of Neuroscience, 1999, 11, 4341-4348.	2.6	57
142	Robust Regeneration of CNS Axons through a Track Depleted of CNS Glia. Experimental Neurology, 2000, 161, 49-66.	4.1	57
143	Stem cell transplantation for Huntington's disease. Experimental Neurology, 2007, 203, 279-292.	4.1	57
144	Neural grafting in Parkinson's disease. Progress in Brain Research, 2010, 184, 295-309.	1.4	57

9

#	Article	IF	CITATIONS
145	A lateralised grip strength test to evaluate unilateral nigrostriatal lesions in rats. Neuroscience Letters, 1998, 246, 1-4.	2.1	56
146	The operant serial implicit learning task reveals early onset motor learning deficits in the HdhQ92knock-in mouse model of Huntington's disease. European Journal of Neuroscience, 2007, 25, 551-558.	2.6	56
147	Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiology of Disease, 2014, 61, 79-89.	4.4	56
148	Behavioural effects of subthalamic nucleus lesions in the hemiparkinsonian marmoset (Callithrix) Tj ETQq0 0 0 rş	gBT_/Overl 2.6	ock 10 Tf 50 (
149	Ibotenic acid lesions of the lateral hypothalamus: Comparison with 6-hydroxydopamine-induced sensorimotor deficits. Neuroscience, 1985, 14, 509-518.	2.3	53
150	Functional and anatomical reconstruction of the 6-hydroxydopamine lesioned nigrostriatal system of the adult rat. Neuroscience, 1996, 71, 913-925.	2.3	53
151	The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain Neuroscience, 1997, 79, 695-710.	2.3	53
152	Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 94-103.	3.0	53
153	Regulatory impairments following selective 6-OHDA lesions of the neostriatum. Behavioural Brain Research, 1982, 4, 195-202.	2.2	51
154	Nimodipine enhances growth and vascularization of neural grafts. Experimental Neurology, 1989, 104, 1-9.	4.1	51
155	Assessment of striatal graft viability in the rat in vivo using a small diameter PET scanner. NeuroReport, 1995, 6, 2017-2021.	1.2	51
156	A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation, 1995, 4, 173-200.	2.5	51
157	Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Developmental Brain Research, 1997, 98, 291-295.	1.7	51
158	EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Research Bulletin, 2005, 68, 83-94.	3.0	51
159	On hip Alginate Microencapsulation of Functional Cells. Macromolecular Rapid Communications, 2008, 29, 165-170.	3.9	51
160	Unilateral nigrostriatal 6-hydroxydopamine lesions in mice II: Predicting l-DOPA-induced dyskinesia. Behavioural Brain Research, 2012, 226, 281-292.	2.2	51
161	Conditioned turning in rats: Dopaminergic involvement in the initiation of movement rather than the movement itself. Neuroscience Letters, 1983, 41, 173-178.	2.1	50
162	Proactive interference effects on short-term memory in rats: II. Effects in young and aged rats Behavioral Neuroscience, 1990, 104, 666-670.	1.2	50

#	Article	IF	CITATIONS
163	Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 113-120.	3.0	50
164	Dopaminergic grafts implanted into the neonatal or adult striatum: Comparative effects on rotation and paw reaching deficits induced by subsequent unilateral nigrostriatal lesions in adulthood. Neuroscience, 1993, 54, 657-668.	2.3	49
165	Synaptic relationships between cortical and dopaminergic inputs and intrinsic GABAergic systems within intrastriatal striatal grafts. Journal of Chemical Neuroanatomy, 1993, 6, 147-158.	2.1	49
166	Technical factors that influence neural transplant safety in Huntington's disease. Experimental Neurology, 2011, 227, 1-9.	4.1	49
167	Longitudinal analysis of the behavioural phenotype in Hdh(CAC)150 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 182-188.	3.0	49
168	Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests. Current Protocols in Mouse Biology, 2012, 2, 37-53.	1.2	49
169	Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesions of the neostriatum. Neuropharmacology, 1982, 21, 899-908.	4.1	48
170	Systematic and detailed analysis of behavioural tests in the rat middle cerebral artery occlusion model of stroke: Tests for long-term assessment. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1349-1361.	4.3	48
171	Dopamine-rich transplants in experimental parkinsonism. Trends in Neurosciences, 1983, 6, 266-270.	8.6	47
172	Functional integration of neural grafts in Parkinson's disease. Nature Neuroscience, 1999, 2, 1047-1048.	14.8	47
173	Pharmaceutical, cellular and genetic therapies for Huntington's disease. Clinical Science, 2006, 110, 73-88.	4.3	47
174	A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington's Disease. Frontiers in Neurology, 2015, 6, 177.	2.4	47
175	Acetylcholine-rich transplants in the hippocampus: influence of intrinsic growth factors and application of nerve growth factor on choline acetyltransferase activity. Brain Research, 1985, 345, 141-146.	2.2	46
176	Nigral transplantation. NeuroReport, 1997, 8, i-ii.	1.2	46
177	Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Neuroscience, 2005, 132, 543-552.	2.3	46
178	Improved survival of young donor age dopamine grafts in a rat model of Parkinson's disease. Neuroscience, 2007, 146, 1606-1617.	2.3	46
179	Recovery of functional deficits following early donor age ventral mesencephalic grafts in a rat model of Parkinson's disease. Neuroscience, 2008, 154, 631-640.	2.3	46
180	Cognitive dysfunction and depression in Parkinson's disease: what can be learned from rodent models?. European Journal of Neuroscience, 2012, 35, 1894-1907.	2.6	46

#	Article	IF	CITATIONS
181	The 6-OHDA mouse model of Parkinson's disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behavioural Brain Research, 2015, 288, 107-117.	2.2	46
182	Functional reinnervation of the denervated neostriatum by nigral transplants. Peptides, 1980, 1, 111-116.	2.4	45
183	The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. European Journal of Neuroscience, 1998, 10, 1835-1845.	2.6	45
184	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in a lateralised nose-poking task in rats. Behavioural Brain Research, 2005, 159, 153-161.	2.2	45
185	A quantitative study of cell death in the substantia nigra following a mechanical lesion of the medial forebrain bundle. Neuroscience, 1995, 64, 219-227.	2.3	44
186	Differential effects of unilateral striatal and nigrostriatal lesions on grip strength, skilled paw reaching and drug-induced rotation in the rat. Brain Research Bulletin, 2001, 55, 541-548.	3.0	44
187	Review: Neurorehabilitation With Neural Transplantation. Neurorehabilitation and Neural Repair, 2010, 24, 692-701.	2.9	44
188	Neural transplants as a treatment for Alzheimer's disease?. Psychological Medicine, 1991, 21, 825-830.	4.5	43
189	Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Research Bulletin, 1998, 46, 487-493.	3.0	43
190	A Critical Re-Examination of the Intraluminal Filament MCAO Model: Impact of External Carotid Artery Transection. Translational Stroke Research, 2011, 2, 651-661.	4.2	43
191	Embryonic Donor Age and Dissection Influences Striatal Graft Development and Functional Integration in a Rodent Model of Huntington's Disease. Experimental Neurology, 2000, 163, 85-97.	4.1	42
192	Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants. European Journal of Neuroscience, 2004, 20, 1953-1959.	2.6	42
193	Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2006, 69, 452-457.	3.0	42
194	Selective cognitive impairment in the YAC128 Huntington's disease mouse. Brain Research Bulletin, 2012, 88, 121-129.	3.0	42
195	Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 104-112.	3.0	42
196	Effects of dopamine-rich grafts on conditioned rotation in rats with unilateral 6-hydroxydopamine lesions. Neuroscience Letters, 1986, 68, 127-133.	2.1	41
197	Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Experimental Brain Research, 1994, 101, 365-74.	1.5	41
198	Basic neural transplantation techniques. I. Dissociated cell suspension grafts of embryonic ventral mesencephalon in the adult rat brain. Brain Research Protocols, 1997, 1, 91-99.	1.6	41

#	Article	IF	CITATIONS
199	Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nature Methods, 2009, 6, 271-273.	19.0	41
200	Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 2013, 71, 148-153.	4.1	41
201	Striatal graft projections are influenced by donor cell type and not the immunogenic background. Brain, 2007, 130, 1317-1329.	7.6	40
202	Embryonic striatal grafts restore biâ€directional synaptic plasticity in a rodent model of Huntington's disease. European Journal of Neuroscience, 2009, 30, 2134-2142.	2.6	40
203	Survival and Functional Restoration of Human Fetal Ventral Mesencephalon following Transplantation in a Rat Model of Parkinson's Disease. Cell Transplantation, 2013, 22, 1281-1293.	2.5	40
204	Neuronal cell transplantation for Parkinson's and Huntington's diseases. British Medical Bulletin, 1997, 53, 757-776.	6.9	39
205	Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 81-88.	2.5	39
206	Increased proenkephalin mRNA levels in the rat neostriatum following lesion of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylpyridinium ion (MPP+): reversal by embryonic nigral dopamine grafts. Molecular Brain Research, 1991, 9, 263-269.	2.3	38
207	Behavioural recovery following striatal transplantation: effects of postoperative training and P-zone volume. Experimental Brain Research, 1999, 128, 535-538.	1.5	38
208	Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson's disease. Progress in Brain Research, 2010, 184, 35-51.	1.4	38
209	Proximal movements compensate for distal forelimb movement impairments in a reach-to-eat task in Huntington's disease: New insights into motor impairments in a real-world skill. Neurobiology of Disease, 2011, 41, 560-569.	4.4	38
210	Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson's disease. Experimental Brain Research, 2003, 151, 204-217.	1.5	37
211	Longitudinal analysis of the behavioural phenotype in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 148-155.	3.0	37
212	Comparison of rating scales used to evaluate l-DOPA-induced dyskinesia in the 6-OHDA lesioned rat. Neurobiology of Disease, 2013, 50, 142-150.	4.4	37
213	Huntington's disease: animal models and transplantation repair. Current Opinion in Neurobiology, 1993, 3, 790-796.	4.2	36
214	Bridge grafts of fibroblast growth factor-4-secreting schwannoma cells promote functioal axonal regeneration in the nigrostriatal pathway of the adult rat. Neuroscience, 1996, 74, 775-784.	2.3	36
215	The T Cell Oncogene Tal2 Is Necessary for Normal Development of the Mouse Brain. Developmental Biology, 2000, 227, 533-544.	2.0	36
216	Selective Lesioning of the Cholinergic Septo-Hippocampal Pathway Does Not Disrupt Spatial Short-Term Memory: A Comparison With the Effects of Fimbria-Fornix Lesions Behavioral Neuroscience, 2004, 118, 546-562.	1.2	36

#	Article	IF	CITATIONS
217	Time course of choice reaction time deficits in the HdhQ92 knock-in mouse model of Huntington's disease in the operant Serial Implicit Learning Task (SILT). Behavioural Brain Research, 2008, 189, 317-324.	2.2	36
218	Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Research Bulletin, 2012, 88, 137-147.	3.0	36
219	Disappearance of the μ-opiate receptor patches in the rat neostriatum following lesioning of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylphyridinium ion (MPP+): restoration by embryonic nigral dopamine grafts. Brain Research, 1989, 504, 115-120.	2.2	35
220	Optimising Plasticity: Environmental and Training Associated Factors in Transplant-mediated Brain Repair. Reviews in the Neurosciences, 2005, 16, 1-22.	2.9	35
221	Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics, 2006, 7, 211.	2.6	35
222	Cell transplantation for Huntington's disease. Brain Research Bulletin, 2007, 72, 132-147.	3.0	35
223	Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. Journal of Neuroscience Methods, 2011, 200, 29-35.	2.5	35
224	Intrastriatal dopamine-rich grafts induce a hyperexpression of Fos protein when challenged with amphetamine. Experimental Brain Research, 1992, 91, 181-90.	1.5	34
225	Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically on donor embryo age. Cell Transplantation, 1997, 6, 557-569.	2.5	34
226	Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Research Bulletin, 2012, 88, 81-93.	3.0	34
227	Embryonic striatal grafts reverse the disinhibitory effects of ibotenic acid lesions of the ventral striatum. Experimental Brain Research, 1995, 105, 76-86.	1.5	33
228	Targeting the subthalamic nucleus in the treatment of Parkinson's disease. Brain Research Bulletin, 1998, 46, 467-474.	3.0	33
229	Neural Transplantation in Patients with Huntington???s Disease. CNS Drugs, 2003, 17, 853-867.	5.9	33
230	Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine. Psychopharmacology, 2004, 174, 396-405.	3.1	33
231	Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. European Journal of Neuroscience, 2006, 24, 3223-3233.	2.6	33
232	Rule learning, visuospatial function and motor performance in the HdhQ92 knock-in mouse model of Huntington's disease. Behavioural Brain Research, 2009, 203, 215-222.	2.2	33
233	Behavioral recovery after transplantation into a rat model of Huntington's disease: Dependence on anatomical connectivity and extensive postoperative training Behavioral Neuroscience, 2000, 114, 431-436.	1.2	32
234	Intracerebral Grafting of Embryonic Neural Cells into the Adult Host Brain: an Overview of the Cell Suspension Method and Its Application. Developmental Neuroscience, 1983, 6, 137-151.	2.0	31

#	Article	IF	CITATIONS
235	Monoclonal antibody g10 against microtubule-associated protein 1x distinguishes between growing and regenerating axons. Neuroscience, 1989, 28, 49-59.	2.3	31
236	Hypersensitivity to α-methyl-p-tyrosine suggests that behavioural recovery of rats receiving neonatal 6-OHDA lesions is mediated by residual catecholamine neurones. Neuroscience Letters, 1989, 102, 108-113.	2.1	31
237	Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention. Journal of Neurosurgery, 1998, 89, 267-274.	1.6	31
238	Distinct roles for striatal subregions in mediating response processing revealed by focal excitotoxic lesions Behavioral Neuroscience, 1999, 113, 253-264.	1.2	31
239	Long-Term Hibernation of Human Fetal Striatal Tissue does Not Adversely Affect its Differentiation In Vitro or Graft Survival: Implications for Clinical Trials in Huntington's Disease. Cell Transplantation, 2003, 12, 687-695.	2.5	31
240	Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson's disease using adenoviral vectors. Brain Research Bulletin, 2005, 68, 31-41.	3.0	31
241	The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Experimental Neurology, 2006, 199, 373-383.	4.1	31
242	Ascorbic Acid Increases the Number of Dopamine Neurons In Vitro and in Transplants to the 6-OHDA-Lesioned Rat Brain. Cell Transplantation, 2008, 17, 763-773.	2.5	31
243	Do alpha-synuclein vector injections provide a better model of Parkinson's disease than the classic 6-hydroxydopamine model?. Experimental Neurology, 2012, 237, 36-42.	4.1	31
244	Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse. Brain Research Bulletin, 2012, 88, 189-198.	3.0	31
245	Analysis of Skilled Forelimb Movement in Rats: The Single Pellet Reaching Test and Staircase Test. Current Protocols in Neuroscience, 2012, 58, Unit8.28.	2.6	31
246	Functional organization of striatum as studied with neural grafts. Neuropsychologia, 1990, 28, 601-626.	1.6	30
247	The survival of neural precursor cell grafts is influenced by in vitro expansion. Journal of Anatomy, 2005, 207, 227-240.	1.5	30
248	Striatal grafts alleviate deficits in response execution in a lateralised reaction time task. Brain Research Bulletin, 1998, 47, 585-593.	3.0	29
249	Hibernated Human Fetal Striatal Tissue: Successful Transplantation in a Rat Model of Huntington's Disease. Cell Transplantation, 2000, 9, 743-749.	2.5	29
250	Surveying the literature from animal experiments. BMJ: British Medical Journal, 2005, 330, 977-978.	2.3	29
251	Clinical translation of cell transplantation in the brain. Current Opinion in Organ Transplantation, 2011, 16, 632-639.	1.6	29
252	Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 182-188.	3.0	29

#	Article	IF	CITATIONS
253	Neonatal dopamine-rich grafts and 6-OHDA lesions independently provide partial protection from the adult nigrostriatal lesion syndrome. Behavioural Brain Research, 1989, 34, 131-146.	2.2	28
254	The Morphology, Integration, and Functional Efficacy of Striatal Grafts Differ between Cell Suspensions and Tissue Pieces. Cell Transplantation, 2000, 9, 395-407.	2.5	28
255	Striatal grafts alleviate bilateral striatal lesion deficits in operant delayed alternation in the rat. Experimental Neurology, 2006, 199, 479-489.	4.1	28
256	Amphetamine induced rotation in the assessment of lesions and grafts in the unilateral rat model of Parkinson's disease. European Neuropsychopharmacology, 2007, 17, 206-214.	0.7	28
257	Medium spiny neurons for transplantation in Huntington's disease. Biochemical Society Transactions, 2009, 37, 323-328.	3.4	28
258	Gene expression and behaviour in mouse models of HD. Brain Research Bulletin, 2012, 88, 276-284.	3.0	28
259	Unilateral dopamine lesions in neonatal, weanling and adult rats: comparison of rotation and reaching deficits. Behavioural Brain Research, 1992, 51, 67-75.	2.2	27
260	Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Experimental Brain Research, 1996, 112, 47-57.	1.5	27
261	Light and electron microscopic characterization of the evolution of cellular pathology in HdhQ92 Huntington's disease knock-in mice. Brain Research Bulletin, 2012, 88, 171-181.	3.0	27
262	Death of Dopaminergic Neurons in Vitro and in Nigral Grafts: Reevaluating the Role of Caspase Activation. Experimental Neurology, 2001, 171, 46-58.	4.1	25
263	Medical Terminations of Pregnancy: A Viable Source of Tissue for Cell Replacement Therapy for Neurodegenerative Disorders. Cell Transplantation, 2011, 20, 503-513.	2.5	25
264	Profiles of motor and cognitive impairment in the transgenic rat model of Huntington's disease. Brain Research Bulletin, 2012, 88, 223-236.	3.0	25
265	Anatomical and Behavioral Consequences of Cholinergic-rich Grafts to the Neocortex of Rats with Lesions of the Nucleus Basalis Magnocellularis. Annals of the New York Academy of Sciences, 1987, 495, 415-429.	3.8	24
266	A comparative study of preparation techniques for improving the viability of striatal grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplantation, 1996, 5, 599-611.	2.5	24
267	Unilateral striatal lesions impair response execution on a lateralised choice reaction time task. Behavioural Brain Research, 1997, 87, 159-171.	2.2	24
268	Delayed implantation of nigral grafts improves survival of dopamine neurones and rate of functional recovery. NeuroReport, 1999, 10, 1263-1267.	1.2	24
269	Towards a Protocol for the Preparation and Delivery of Striatal Tissue for Clinical Trials of Transplantation in Huntington's Disease. Cell Transplantation, 2000, 9, 223-234.	2.5	24
270	Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Therapy, 2001, 8, 1057-1071.	4.5	24

#	Article	IF	CITATIONS
271	Implicit learning in a serial choice visual discrimination task in the operant 9-hole box by intact and striatal lesioned mice. Behavioural Brain Research, 2005, 159, 313-322.	2.2	24
272	An operant serial implicit learning task (SILT) in rats: Task acquisition, performance and the effects of striatal lesions. Journal of Neuroscience Methods, 2007, 163, 235-244.	2.5	24
273	The search for genetic mouse models of prodromal Parkinson's disease. Experimental Neurology, 2012, 237, 267-273.	4.1	24
274	Environmental Housing and Duration of Exposure Affect Striatal Graft Morphology in a Rodent Model of Huntington's Disease. Cell Transplantation, 2008, 17, 1125-1134.	2.5	23
275	Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes. Brain Research Bulletin, 2012, 88, 210-222.	3.0	23
276	The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease. Journal of Neuroscience Methods, 2016, 265, 72-80.	2.5	23
277	Cholecystokinin-dependent regulation of host dopamine inputs to striatal grafts. Neuroscience, 1993, 53, 651-663.	2.3	22
278	Striatal neurons in striatal grafts are derived from both post-mitotic cells and dividing progenitors. European Journal of Neuroscience, 2004, 19, 513-520.	2.6	22
279	Movement without dopamine: striatal dopamine is required to maintain but not to perform learned actions. Biochemical Society Transactions, 2007, 35, 428-432.	3.4	22
280	Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brain Research Bulletin, 2012, 88, 130-136.	3.0	22
281	Conditioning versus priming of dopaminergic grafts by amphetamine. Experimental Brain Research, 1993, 93, 46-54.	1.5	21
282	The Development of Intracerebral Cell-Suspension Implants is Influenced by the Grafting Medium. Cell Transplantation, 1998, 7, 573-583.	2.5	21
283	Transplanted hNT Cells ("LBS Neuronsâ€) in a Rat Model of Huntington's Disease: Good Survival, Incomplete Differentiation, and Limited Functional Recovery. Cell Transplantation, 2004, 13, 123-136.	2.5	21
284	Age-Dependent Maintenance of Motor Controland Corticostriatal Innervation by Death Receptor 3. Journal of Neuroscience, 2010, 30, 3782-3792.	3.6	21
285	Pre-treatment with dopamine agonists influence l-dopa mediated rotations without affecting abnormal involuntary movements in the 6-OHDA lesioned rat. Behavioural Brain Research, 2010, 213, 66-72.	2.2	21
286	Mouse Models of Huntington's Disease. Current Topics in Behavioral Neurosciences, 2013, 22, 101-133.	1.7	21
287	Intraspinal stem cell transplantation for amyotrophic lateral sclerosis: Ready for efficacy clinical trials?. Cytotherapy, 2016, 18, 1471-1475.	0.7	21
288	A novel population of tyrosine hydroxylase immunoreactive neurones in the basal forebrain of the common marmoset (Callithrix jacchus). Neuroscience Letters, 1993, 150, 29-32.	2.1	20

#	Article	IF	CITATIONS
289	Caspase Inhibition Increases Embryonic Striatal Graft Survival. Experimental Neurology, 2000, 164, 112-120.	4.1	20
290	Dissecting Embryonic Neural Tissues for Transplantation. Neuromethods, 2000, , 3-25.	0.3	20
291	An investigation of the problem of two-layered immunohistochemical staining in paraformaldehyde fixed sections. Journal of Neuroscience Methods, 2006, 158, 64-74.	2.5	20
292	The corridor task: Striatal lesion effects and graft-mediated recovery in a model of Huntington's disease. Behavioural Brain Research, 2007, 179, 326-330.	2.2	20
293	Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?. Neurochemistry International, 2017, 106, 114-121.	3.8	20
294	NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLOS Currents, 2011, 3, RRN1247.	1.4	20
295	Decreased brown adipose tissue thermogenic activity following a reduction in brain serotonin by intraventricular p-chlorophenylalanine. Bioscience Reports, 1987, 7, 121-127.	2.4	19
296	Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway—III. Reversal by embryonic nigral dopamine grafts. Neuroscience, 1990, 37, 757-766.	2.3	19
297	The effects of bilateral striatal lesions on the acquisition of an operant test of short term memory. NeuroReport, 1995, 6, 2049-2053.	1.2	19
298	Comparison of 6-hydroxydopamine-induced medial forebrain bundle and nigrostriatal terminal lesions in rats using a lateralised nose-poking task with low stimulus–response compatibility. Behavioural Brain Research, 2005, 165, 181-186.	2.2	19
299	Potential cellular and regenerative approaches for the treatment of Parkinson's disease. Neuropsychiatric Disease and Treatment, 2008, 4, 835.	2.2	19
300	Neural tissue transplantation, repair, and rehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 43-59.	1.8	19
301	Dopamine-rich grafts alleviate deficits in contralateral response space induced by extensive dopamine depletion in rats. Experimental Neurology, 2013, 247, 485-495.	4.1	19
302	Identification of Novel Alternative Splicing Events in the Huntingtin Gene and Assessment of the Functional Consequences Using Structural Protein Homology Modelling. Journal of Molecular Biology, 2014, 426, 1428-1438.	4.2	19
303	Bilateral striatal lesions impair retention of an operant test of short-term memory. Brain Research Bulletin, 1996, 41, 159-165.	3.0	18
304	Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. Brain Research Bulletin, 2009, 79, 310-315.	3.0	18
305	Longitudinal analysis of gene expression and behaviour in the HdhQ150 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 199-209.	3.0	18
306	Serotonin hyperinnervation after foetal nigra or raphe transplantation in the neostriatum of adult rats. Neuroscience Letters, 1991, 128, 281-284.	2.1	17

#	Article	IF	CITATIONS
307	HSV vector-delivery of GDNF in a rat model of PD: partial efficacy obscured by vector toxicity. Brain Research, 2004, 1024, 1-15.	2.2	17
308	Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task. Brain Research, 2007, 1185, 179-188.	2.2	17
309	Functional Analysis of Fronto-Striatal Reconstruction by Striatal Grafts. Novartis Foundation Symposium, 2008, , 21-52.	1.1	17
310	Early onset deficits on the delayed alternation task in the HdhQ92 knock-in mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 156-162.	3.0	17
311	Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington's disease. Brain Research Bulletin, 2012, 88, 163-170.	3.0	17
312	Brain Repair in a Unilateral Rat Model of Huntington's Disease: New Insights into Impairment and Restoration of Forelimb Movement Patterns. Cell Transplantation, 2013, 22, 1735-1751.	2.5	17
313	Fetal Porcine Dopaminergic Cell Survival in Vitro and its Relationship to Embryonic Age. Cell Transplantation, 1999, 8, 593-599.	2.5	16
314	Hippocampal lesions impair performance on a conditional delayed matching and non-matching to position task in the rat. Behavioural Brain Research, 2006, 171, 240-250.	2.2	16
315	Environmental Enrichment Facilitates Long-Term Potentiation in Embryonic Striatal Grafts. Neurorehabilitation and Neural Repair, 2011, 25, 548-557.	2.9	16
316	Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats. Neuropharmacology, 2012, 63, 818-828.	4.1	16
317	Comparison of 6â€hydroxydopamine lesions of the substantia nigra and the medial forebrain bundle on a lateralised choice reaction time task in mice. European Journal of Neuroscience, 2013, 37, 294-302.	2.6	16
318	Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Frontiers in Cellular Neuroscience, 2014, 8, 398.	3.7	16
319	Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE, 2016, 11, e0155834.	2.5	16
320	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington's disease. Scientific Reports, 2017, 7, 41570.	3.3	16
321	Outcome of cell suspension allografts in a patient with Huntington's disease. Annals of Neurology, 2018, 84, 950-956.	5.3	16
322	Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation InÂVitro and in the Rat Brain. Stem Cell Reports, 2019, 12, 191-200.	4.8	16
323	Differential effects of ventral and regional dorsal striatal lesions on sucrose drinking and positive and negative contrast in rats. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 267-276.	1.3	16
324	Behavioural consequences of neural transplantation. Journal of Neurology, 1994, 242, S43-S53.	3.6	15

19

#	Article	IF	CITATIONS
325	Acetylcholine revisited. Nature, 1995, 375, 446-446.	27.8	15
326	Volume and Differentiation of Striatal Grafts in Rats: Relationship to the Number of Cells Implanted. Cell Transplantation, 2000, 9, 65-72.	2.5	15
327	Unilateral lesions of the medial agranular cortex impair responding on a lateralised reaction time task. Behavioural Brain Research, 2000, 111, 139-151.	2.2	15
328	Neural Transplantation in Huntington's Disease: The NEST-UK Donor Tissue Microbiological Screening Program and Review of the Literature. Cell Transplantation, 2006, 15, 279-294.	2.5	15
329	Long-term expansion of human foetal neural progenitors leads to reduced graft viability in the neonatal rat brain. Experimental Neurology, 2012, 235, 563-573.	4.1	15
330	Is the adult mouse striatum a hostile host for neural transplant survival?. NeuroReport, 2013, 24, 1010-1015.	1.2	15
331	Translation of Cell Therapies to the Clinic: Characteristics of Cell Suspensions in Large-Diameter Injection Cannulae. Cell Transplantation, 2015, 24, 737-749.	2.5	15
332	Targeting delivery in Parkinson's disease. Drug Discovery Today, 2016, 21, 1313-1320.	6.4	15
333	Rewiring the Parkinsonian brain. Nature Medicine, 2002, 8, 105-106.	30.7	14
334	Fronto-striatal disconnection disrupts operant delayed alternation performance in the rat. NeuroReport, 2006, 17, 435-441.	1.2	14
335	A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0164072.	2.5	14
336	A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2016, 5, 149-161.	1.9	14
337	Cognitive training modifies disease symptoms in a mouse model of Huntington's disease. Experimental Neurology, 2016, 282, 19-26.	4.1	14
338	INTRACEREBRAL GRAFTING OF DISSOCIATED CNS TISSUE SUSPENSIONS. , 1983, , 325-357.		14
339	3-nitropropionic acid-induced changes in the expression of metabolic and astrocyte mRNAs. NeuroReport, 1998, 9, 2881-2886.	1.2	13
340	The intrinsic specification of γ-aminobutyric acid type A receptor α6 subunit gene expression in cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 2194-2198.	2.6	13
341	Cell therapy for Huntington's disease, the next step forward. Lancet Neurology, The, 2002, 1, 81.	10.2	13
342	Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation, 2004, 11, 60-71.	2.8	13

#	Article	IF	CITATIONS
343	Cell-Based Treatments for Huntington's Disease. International Review of Neurobiology, 2011, 98, 483-508.	2.0	13
344	Bilateral striatal lesions disrupt performance in an operant delayed reinforcement task in rats. Brain Research Bulletin, 2012, 88, 251-260.	3.0	13
345	Using Actiwatch to monitor circadian rhythm disturbance in Huntington' disease: A cautionary note. Journal of Neuroscience Methods, 2016, 265, 13-18.	2.5	13
346	Fluorescent histochemical demonstration of catecholamines in brown adipose tissue from obese (ob/ob) and lean mice acclimated at different temperatures. Journal of the Autonomic Nervous System, 1985, 14, 377-386.	1.9	12
347	Chapter 13 Is it possible to repair the damaged prefrontal cortex by neural tissue transplantation?. Progress in Brain Research, 1991, 85, 285-297.	1.4	12
348	Intrastriatal grafts derived from fetal striatal primordia—IV. Host and donor neurons are not intermixed. Neuroscience, 1993, 55, 363-372.	2.3	12
349	L-DOPA, dyskinesia and striatal plasticity. Nature Neuroscience, 2003, 6, 437-438.	14.8	12
350	Genetic, temporal and diurnal influences on L-dopa-induced dyskinesia in the 6-OHDA model. Brain Research Bulletin, 2009, 78, 248-253.	3.0	12
351	Operant-based instrumental learning for analysis of genetically modified models of Huntington's disease. Brain Research Bulletin, 2012, 88, 261-275.	3.0	12
352	Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease. Brain, Behavior, and Immunity, 2017, 61, 155-164.	4.1	12
353	Motor Assessment in Huntington's Disease Mice. Methods in Molecular Biology, 2018, 1780, 121-141.	0.9	12
354	Neurotrophic factors and neural grafts: a growing field. Seminars in Neuroscience, 1993, 5, 431-441.	2.2	11
355	Repair of the damaged brain. The Alfred Meyer Memorial Lecture 1998. Neuropathology and Applied Neurobiology, 1999, 25, 351-362.	3.2	11
356	Chapter 55 Neural transplantation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2009, 95, 885-912.	1.8	11
357	Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue Grafts on Motor Function. Cell Transplantation, 2016, 25, 665-675.	2.5	11
358	Transplantation site influences the phenotypic differentiation of dopamine neurons in ventral mesencephalic grafts in Parkinsonian rats. Experimental Neurology, 2017, 291, 8-19.	4.1	11
359	Mechanisms and use of neural transplants for brain repair. Progress in Brain Research, 2017, 230, 1-51.	1.4	11
360	The Release of Excitatory Amino Acids, Dopamine, and Potassium following Transplantation of Embryonic Mesencephalic Dopaminergic Grafts to the Rat Striatum, and Their Effects on Dopaminergic Neuronal Survival In Vitro. Cell Transplantation, 2002, 11, 637-652.	2.5	10

#	Article	IF	CITATIONS
361	Three-dimensional motion analysis of postural adjustments during over-ground locomotion in a rat model of Parkinson's disease. Behavioural Brain Research, 2011, 220, 119-125.	2.2	10
362	Context-driven changes in l-DOPA-induced behaviours in the 6-OHDA lesioned rat. Neurobiology of Disease, 2011, 42, 99-107.	4.4	10
363	A novel extended sequence learning task (ESLeT) for rodents: Validation and the effects of amphetamine, scopolamine and striatal lesions. Brain Research Bulletin, 2012, 88, 237-250.	3.0	10
364	Cognitive deficits in animal models of basal ganglia disorders. Brain Research Bulletin, 2013, 92, 29-40.	3.0	10
365	Internal Composition of Striatal Grafts: Light and Electron Microscopy. Advances in Behavioral Biology, 1994, , 189-196.	0.2	10
366	Cellular localisation of somatostatin mRNA and neuropeptide Y mRNA in foetal striatal tissue grafts. Neuroscience Letters, 1989, 103, 121-126.	2.1	9
367	Chapter 43 Identification of grafted neurons with fluorescent-labelled microbeads. Progress in Brain Research, 1990, 82, 385-390.	1.4	9
368	Response disinhibition on a delayed matching to position task induced by amphetamine, nicotine and age. Psychopharmacology, 1991, 104, 137-139.	3.1	9
369	Aspects of PET imaging relevant to the assessment of striatal transplantation in Huntington's disease. Journal of Anatomy, 2000, 196, 597-607.	1.5	9
370	The problem of antipsychotic treatment for functional imaging in Huntington's disease: receptor binding, gene expression and locomotor activity after sub-chronic administration and wash-out of haloperidol in the rat. Brain Research, 2000, 853, 125-135.	2.2	9
371	Role of corticostriatal and nigrostriatal inputs in malonate-induced striatal toxicity. NeuroReport, 2001, 12, 89-93.	1.2	9
372	Membrane permeability coefficients of murine primary neural brain cells in the presence of cryoprotectant. Cryobiology, 2009, 58, 308-314.	0.7	9
373	Aberrant Dopamine Transmission and Cognitive Dysfunction in Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 151-165.	2.8	9
374	Cell transplantation for Huntington's disease: practical and clinical considerations. Future Neurology, 2011, 6, 45-62.	0.5	9
375	Amphetamine-Induced Dyskinesia in the Transplanted Hemi-Parkinsonian Mouse. Journal of Parkinson's Disease, 2012, 2, 107-113.	2.8	9
376	Nigral grafts in animal models of Parkinson's disease. Is recovery beyond motor function possible?. Progress in Brain Research, 2012, 200, 113-142.	1.4	9
377	Behavioural recovery on simple and complex tasks by means of cell replacement therapy in unilateral 6â€hydroxydopamineâ€lesioned mice. European Journal of Neuroscience, 2013, 37, 1691-1704. 	2.6	9
378	The effect of additional noradrenergic and serotonergic depletion on a lateralised choice reaction time task in rats with nigral 6-OHDA lesions. Experimental Neurology, 2014, 253, 52-62.	4.1	9

#	Article	IF	CITATIONS
379	6-OHDA Lesion Models of Parkinsonâ $€$ ™s Disease in the Rat. Neuromethods, 2011, , 267-279.	0.3	9
380	Chapter V Motor function(s) of the nigrostriatal dopamine system: Studies of lesions and behavior. Handbook of Chemical Neuroanatomy, 2005, 21, 237-301.	0.3	8
381	Chapter 46 Ultrastructural organization within intrastriatal striatal grafts. Progress in Brain Research, 1990, 82, 407-415.	1.4	7
382	In vivo effects of kFGF on embryonic nigral grafts in a rat model of Parkinson's disease. NeuroReport, 1995, 6, 2177-2181.	1.2	7
383	The development of intracerebral cell-suspension implants is influenced by the grafting medium. Cell Transplantation, 1998, 7, 573-583.	2.5	7
384	Age-dependence of malonate-induced striatal toxicity. Experimental Brain Research, 2000, 134, 335-343.	1.5	7
385	Challenges Facing Quantification of Rat Locomotion along Beams of Varying Widths. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1257-1265.	1.8	7
386	Impaired sensitivity to Pavlovian stimulus–outcome learning after excitotoxic lesion of the ventrolateral neostriatum. Behavioural Brain Research, 2011, 225, 522-528.	2.2	7
387	Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington's disease are not reflected in mutant Huntingtin inclusion prevalence. BMC Genomics, 2015, 16, 1079.	2.8	7
388	Generating Excitotoxic Lesion Models of Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 209-220.	0.9	7
389	Functional Analysis of Neural Grafts in the Neostriatum. , 1990, , 355-373.		7
390	Functional compensation afforded by grafts of foetal neurones. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1989, 13, 453-467.	4.8	6
391	Intrastriatal excitotoxic lesion or dopamine depletion of the neostriatum differentially impairs response execution in extrapersonal space. European Journal of Neuroscience, 2012, 36, 3420-3428.	2.6	6
392	Specificity of cerebellar grafts. Nature, 1987, 327, 366-367.	27.8	5
393	In vivo transgene expression from an adenoviral vector is altered following a 6-OHDA lesion of the dopamine system. Molecular Brain Research, 2005, 137, 1-10.	2.3	5
394	Cell transplantation for Huntington's disease. Lancet Neurology, The, 2006, 5, 284-285.	10.2	5
395	Unilateral 6-OHDA Lesions Induce Lateralised Deficits in a â€ [~] Skinner box' Operant Choice Reaction Time Task in Rats. Journal of Parkinson's Disease, 2012, 2, 309-320.	2.8	5
396	Characterisation of spatial neglect induced by unilateral 6-OHDA lesions on a choice reaction time task in rats. Behavioural Brain Research, 2013, 237, 215-222.	2.2	5

#	Article	IF	CITATIONS
397	Nigral 6-hydroxydopamine lesion impairs performance in a lateralised choice reaction time task—Impact of training and task parameters. Behavioural Brain Research, 2014, 266, 207-215.	2.2	5
398	Rehabilitation training in neural restitution. Progress in Brain Research, 2017, 230, 305-329.	1.4	5
399	THE REJECTION OF NEURAL XENOTRANSPLANTS: A ROLE FOR ANTIBODIES?. Transplantation, 1999, 68, 1091-1092.	1.0	5
400	Spontaneous response tendencies in noncontingent trials of a matching-to-position task in rats: Consequences for learning the matching and nonmatching task contingencies. Cognitive, Affective and Behavioral Neuroscience, 1995, 23, 76-84.	1.3	5
401	Chapter 55 Nigral grafts in neonatal rats: protection from aphagia induced by subsequent adult 6-OHDA lesions. Progress in Brain Research, 1990, 82, 489-492.	1.4	4
402	Expression of c-fos, jun D and pp60c - src + mRNAs in the developing and grafted rat striatum. Molecular Brain Research, 1996, 41, 90-96.	2.3	4
403	Antioxidant strategy to counteract the side effects of antipsychotic therapy: an in vivo study in rats. European Journal of Pharmacology, 2000, 408, 35-39.	3.5	4
404	A Simple Breeding Protocol for the Procurement of Accurately Staged Rat Donor Embryos for Neural Transplantation. Cell Transplantation, 2009, 18, 471-476.	2.5	4
405	Validating the use of M4-BAC-GFP mice as tissue donors in cell replacement therapies in a rodent model of Huntington's disease. Journal of Neuroscience Methods, 2011, 197, 6-13.	2.5	4
406	Lickometry: A novel and sensitive method for assessing functional deficits in rats after stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 755-761.	4.3	4
407	Huntingtin Subcellular Localisation Is Regulated by Kinase Signalling Activity in the StHdhQ111 Model of HD. PLoS ONE, 2015, 10, e0144864.	2.5	4
408	Choice Reaction Time and Learning. , 2012, , 534-537.		4
409	Trophic mechanisms are not enough. Trends in Neurosciences, 1989, 12, 257.	8.6	3
410	Behavioral assessment of the ability of intracerebral embryonic neural tissue grafts to ameliorate the effects of brain damage in marmosets. Molecular Neurobiology, 1994, 9, 207-223.	4.0	3
411	Ivan Divac and the neostriatum as a cognitive structure. Brain Research Bulletin, 1999, 50, 429-430.	3.0	3
412	Neural Stem Cell Technology as a Novel Treatment for Parkinson's Disease. , 2001, 62, 289-307.		3
413	Impact factor rises again. Brain Research Bulletin, 2004, 64, 285-287.	3.0	3
414	Animal Models of Parkinson's Disease. , 2008, , 313-322.		3

#	Article	IF	CITATIONS
415	Lesions of the premotor and supplementary motor areas fail to prevent implicit learning in the operant serial implicit learning task. Brain Research, 2009, 1284, 116-124.	2.2	3
416	Amphetamine-induced rotation in the transplanted hemi-parkinsonian rat – Response to pharmacological modulation. Behavioural Brain Research, 2012, 232, 411-415.	2.2	3
417	The Effect of Tissue Preparation and Donor Age on Striatal Graft Morphology in the Mouse. Cell Transplantation, 2018, 27, 230-244.	2.5	3
418	Basic Transplantation Methods in Rodent Brain. Neuromethods, 2000, , 133-148.	0.3	3
419	Conditions for Neuronal Survival and Growth as Assessed by the Intracerebral Transplantation Technique in Lesion Models of the Adult CNS. , 1987, , 529-544.		3
420	9.4 Transplantation of Dopamine Neurons: Extent and Mechanisms of Functional Recovery in Rodent Models of Parkinson's Disease. , 2009, , 454-477.		3
421	Immunohistochemical Identification of Rat Adrenal Cortical Tissue in Situ, in Vitro, and in Intracerebral Adrenal Grafts. Experimental Neurology, 1993, 122, 125-129.	4.1	2
422	Effects of surgical anaesthesia on the viability of nigral grafts in the rat striatum. Cell Transplantation, 1998, 7, 567-572.	2.5	2
423	Addition of Fresh Blood to Intrastriatal Grafts of Embryonic Mesencephalon into the Hemiparkinsonian Rat Does Not Impair the Survival of Grafted Dopaminergic Neurones. Experimental Neurology, 1999, 156, 205-208.	4.1	2
424	Introduction (Part I). Progress in Brain Research, 2012, 200, 3-5.	1.4	2
425	Introduction (Part II). Progress in Brain Research, 2012, 201, 3-5.	1.4	2
426	Factors Important in the Survival of Dopamine Neurons in Intracerebral Grafts of Embryonic Substantia Nigra. Methods in Neurosciences, 1994, 21, 237-252.	0.5	2
427	Neural Transplantation in Huntington's Disease. , 2007, , 417-437.		2
428	Multiple potential mechanisms of graft action is not a new idea. Behavioral and Brain Sciences, 1995, 18, 56-57.	0.7	1
429	"Highlights of Twentieth Century Neuroscience―Brain Research Bulletin, special last issue for 1999. Brain Research Bulletin, 1999, 50, 301.	3.0	1
430	Reverse transcription of inserted DNA in a monkey gives us ANDi. Trends in Pharmacological Sciences, 2001, 22, 211-214.	8.7	1
431	Neural transplantation. , 0, , 269-308.		1

432 Neural Transplantation in Parkinson's Disease. , 2007, , 439-454.

1

#	Article	IF	CITATIONS
433	Reprogramming the diseased brain. Nature Biotechnology, 2017, 35, 426-428.	17.5	1
434	Topographic Factors Affecting the Functional Viability of Dopamine-Rich Grafts in the Neostriatum. , 1998, , 135-169.		1
435	Cell-Based Therapy for Huntington's Disease. , 2006, , 83-116.		1
436	Elegant studies of transplant-derived repair of cognitive performance. Behavioral and Brain Sciences, 1995, 18, 57-57.	0.7	0
437	Barrier breaker. Nature, 1995, 377, 267-268.	27.8	0
438	Embryonic Striatal Grafting: Progress and Future Directions for Therapeutic Approaches to Neurodegenerative Diseases of the Basal Ganglia. Frontiers of Neurology and Neuroscience, 1995, 14, 225-234.	2.8	0
439	Controversies and Letters to the Editor. Brain Research Bulletin, 2002, 58, 545.	3.0	0
440	Lewy Body Dementia. , 2010, , 705-705.		0
441	Reply to "Neonatal desensitization does not universally prevent xenograft rejection". Nature Methods, 2012, 9, 858-858.	19.0	0
442	What helps can also hinder: A dissociation in the acute effect of levodopa treatment on motor and cognitive functions. Movement Disorders, 2013, 28, 563-564.	3.9	0
443	115. Cytokine, 2013, 63, 270.	3.2	0
444	Long-term restorative effects of bromocriptine on operant responding in the 6-hydroxydopamine-lesioned rat. NeuroReport, 2013, 24, 1019-1024.	1.2	0
445	B12â€Characterising gene expression changes in mouse lines with varying repeat lengths in HTT. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A13.1-A13.	1.9	0
446	C4â€Motivation and reward seeking in HD mouse lines: possible association with ventral striatal mHTT load and dopamine receptor loss. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A28.1-A28.	1.9	0
447	Dopaminergic Progenitors Derived From Epiblast Stem Cells Function Similarly to Primary VM-Derived Progenitors When Transplanted Into a Parkinson's Disease Model. Frontiers in Neuroscience, 2020, 14, 312.	2.8	0
448	Operant Analysis of Striatal Dysfunction. , 2000, , 249-273.		0
449	The 3-Nitropropionic Acid Model of Huntington's Disease. , 2000, , 141-156.		0
450	Which Basal Ganglia Surgical Targets Ameliorate Parkinsonian Symptoms?. Advances in Behavioral Biology, 2002, , 533-542.	0.2	0

#	Article	IF	CITATIONS
451	Neurotoxins. , 2014, , 1-8.		0
452	l21â€Functional assessment of grafted human embryonic stem cells-derived progenitors in a rat model of huntington's disease. , 2018, , .		0
453	Cell therapy in Huntington's disease. Neurotherapeutics, 2004, 1, 394-405.	4.4	0