List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of centrally-powered variable pitch propeller quadcopters subject to propeller faults. Aerospace Science and Technology, 2022, 120, 107245.	2.5	3
2	Aerobatic Tic-Toc Control of Planar Quadcopters via Reinforcement Learning. IEEE Robotics and Automation Letters, 2022, 7, 2140-2147.	3.3	1
3	Design of a Switched Control Lyapunov Function for Mobile Robots Aggregation. , 2022, , .		1
4	Modular Fluidic Propulsion Robots. IEEE Transactions on Robotics, 2021, 37, 532-549.	7.3	8
5	A Minimalist Solution to the Multi-robot Barrier Coverage Problem. Lecture Notes in Computer Science, 2021, , 349-353.	1.0	1
6	SwarmCom: an infra-red-based mobile ad-hoc network for severely constrained robots. Autonomous Robots, 2020, 44, 93-114.	3.2	8
7	Supervisory Control of Robot Swarms Using Public Events. , 2020, , .		3
8	Sparse Robot Swarms: Moving Swarms to Real-World Applications. Frontiers in Robotics and AI, 2020, 7, 83.	2.0	26
9	Controllability analysis and controller design for variableâ€pitch propeller quadcopters with one propeller failure. Advanced Control for Applications, 2020, 2, e29.	0.8	4
10	Turing learning with hybrid discriminators. , 2020, , .		0
11	Towards a Swarm Robotic System for Autonomous Cereal Harvesting. Lecture Notes in Computer Science, 2019, , 458-461.	1.0	6
12	Turn-minimizing multirobot coverage. , 2019, , .		12
13	Spatial Coverage Without Computation. , 2019, , .		10
14	Decentralized Pose Control of Modular Reconfigurable Robots Operating in Liquid Environments. , 2019, , .		2
15	Decentralized Gathering of Stochastic, Oblivious Agents on a Grid: A Case Study with 3D M-Blocks. , 2019, , .		1
16	A Soft-Bodied Modular Reconfigurable Robotic System Composed of Interconnected Kilobots. , 2019, , .		5
17	Beyond Local Nash Equilibria for Adversarial Networks. Communications in Computer and Information Science, 2019, , 73-89.	0.4	11
18	Boundary Detection in a Swarm of Kilobots. Lecture Notes in Computer Science, 2019, , 462-466.	1.0	1

#	Article	IF	CITATIONS
19	Finding Consensus Without Computation. IEEE Robotics and Automation Letters, 2018, 3, 1346-1353.	3.3	15
20	Evo-Bots: A Simple, Stochastic Approach to Self-assembling Artificial Organisms. Springer Proceedings in Advanced Robotics, 2018, , 373-385.	0.9	3
21	HyMod: A 3-DOF Hybrid Mobile and Self-Reconfigurable Modular Robot and its Extensions. Springer Proceedings in Advanced Robotics, 2018, , 401-414.	0.9	20
22	Emergence and Inhibition of Synchronization in Robot Swarms. Springer Proceedings in Advanced Robotics, 2018, , 475-486.	0.9	3
23	Re-Establishing Communication in Teams of Mobile Robots. , 2018, , .		4
24	Guest editorial: Special issue on distributed robotics—from fundamentals to applications. Autonomous Robots, 2018, 42, 1521-1523.	3.2	2
25	Control of Synchronization Regimes in Networks of Mobile Interacting Agents. Physical Review Applied, 2017, 7, .	1.5	10
26	Modular Hydraulic Propulsion: A robot that moves by routing fluid through itself. , 2016, , .		10
27	OpenSwarm: An event-driven embedded operating system for miniature robots. , 2016, , .		6
28	Turing learning: a metric-free approach to inferring behavior and its application to swarms. Swarm Intelligence, 2016, 10, 211-243.	1.3	56
29	Human-Robot Swarm Interaction with Limited Situational Awareness. Lecture Notes in Computer Science, 2016, , 125-136.	1.0	10
30	Supervisory control theory applied to swarm robotics. Swarm Intelligence, 2016, 10, 65-97.	1.3	67
31	Using Google Glass in Human–Robot Swarm Interaction. Lecture Notes in Computer Science, 2016, , 196-201.	1.0	8
32	Human Management of a Robotic Swarm. Lecture Notes in Computer Science, 2016, , 282-287.	1.0	2
33	Occlusion-Based Cooperative Transport with a Swarm of Miniature Mobile Robots. IEEE Transactions on Robotics, 2015, 31, 307-321.	7.3	114
34	Swarm Intelligence in Optimization and Robotics. , 2015, , 1291-1309.		18
35	A Self-Organising Model of Thermoregulatory Huddling. PLoS Computational Biology, 2015, 11, e1004283.	1.5	17

#	Article	IF	CITATIONS
37	Coevolutionary learning of swarm behaviors without metrics. , 2014, , .		2
38	HiGen: A high-speed genderless mechanical connection mechanism with single-sided disconnect for self-reconfigurable modular robots. , 2014, , .		21
39	Self-organized aggregation without computation. International Journal of Robotics Research, 2014, 33, 1145-1161.	5.8	112
40	Application of Supervisory Control Theory to Swarms of e-puck and Kilobot Robots. Lecture Notes in Computer Science, 2014, , 62-73.	1.0	14
41	Evolving Aggregation Behaviors in Multi-Robot Systems with Binary Sensors. Springer Tracts in Advanced Robotics, 2014, , 355-367.	0.3	34
42	Self-Assembly. , 2014, , 1-2.		0
43	ANTS 2012 special issue. Swarm Intelligence, 2013, 7, 79-81.	1.3	Ο
44	A strategy for transporting tall objects with a swarm of miniature mobile robots. , 2013, , .		28
45	A coevolutionary approach to learn animal behavior through controlled interaction. , 2013, , .		9
46	A Minimal Model of the Phase Transition into Thermoregulatory Huddling. Lecture Notes in Computer Science, 2013, , 381-383.	1.0	1
47	Why â€~GSA: a gravitational search algorithm' is not genuinely based on the law of gravity. Natural Computing, 2012, 11, 719-720.	1.8	45
48	TAROS2011. Robotics and Autonomous Systems, 2012, 60, 1355.	3.0	0
49	A Stochastic Self-reconfigurable Modular Robot with Mobility Control. Lecture Notes in Computer Science, 2012, , 416-417.	1.0	1
50	ANTS 2010 special issue. Swarm Intelligence, 2011, 5, 143-147.	1.3	2
51	Swarm-Bots to the Rescue. Lecture Notes in Computer Science, 2011, , 165-172.	1.0	10
52	Towards an Autonomous Evolution of Non-biological Physical Organisms. Lecture Notes in Computer Science, 2011, , 173-180.	1.0	6
53	Vision-Based Segregation Behaviours in a Swarm of Autonomous Robots. Lecture Notes in Computer Science, 2011, , 428-429.	1.0	0
54	Cooperative Multi-robot Box Pushing Inspired by Human Behaviour. Lecture Notes in Computer Science, 2011. , 380-381.	1.0	0

Roderich GroãŸ

#	Article	IF	CITATIONS
55	Forming Nested 3D Structures Based on the Brazil Nut Effect. Lecture Notes in Computer Science, 2011, , 394-395.	1.0	2
56	Self-assembly strategies in a group ofÂautonomous mobile robots. Autonomous Robots, 2010, 28, 439-455.	3.2	52
57	From swarm robotics to smart materials. Neural Computing and Applications, 2010, 19, 785-786.	3.2	3
58	Segregation in swarms of mobile robots based on the Brazil nut effect. , 2009, , .		23
59	Teamwork in Self-Organized Robot Colonies. IEEE Transactions on Evolutionary Computation, 2009, 13, 695-711.	7.5	118
60	Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 2009, 1, 1.	0.6	117
61	Self-Assembly at the Macroscopic Scale. Proceedings of the IEEE, 2008, 96, 1490-1508.	16.4	112
62	Simple learning rules to cope with changing environments. Journal of the Royal Society Interface, 2008, 5, 1193-1202.	1.5	39
63	Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling. Adaptive Behavior, 2008, 16, 285-305.	1.1	54
64	Division of Labour in Self-organised Groups. Lecture Notes in Computer Science, 2008, , 426-436.	1.0	11
65	Performance benefits of self-assembly in a swarm-bot. , 2007, , .		10
66	Moving targets: collective decisions and flexible choices in house-hunting ants. Swarm Intelligence, 2007, 1, 81-94.	1.3	20
67	Negotiation of Goal Direction for Cooperative Transport. Lecture Notes in Computer Science, 2006, , 191-202.	1.0	29
68	Autonomous Self-Assembly in Swarm-Bots. , 2006, 22, 1115-1130.		255
69	Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 2006, 1, 115-150.	0.4	83
70	Autonomous Self-assembly in a Swarm-bot. , 2006, , 314-322.		22
71	The SWARM-BOTS Project. Lecture Notes in Computer Science, 2005, , 31-44.	1.0	49
72	Self-assembly on Demand in a Group of Physical Autonomous Mobile Robots Navigating Rough Terrain. Lecture Notes in Computer Science, 2005, , 272-281.	1.0	19

#	Article	IF	CITATIONS
73	Evolving a Cooperative Transport Behavior for Two Simple Robots. Lecture Notes in Computer Science, 2004, , 305-316.	1.0	14
74	Evolving Self-Organizing Behaviors for a Swarm-Bot. Autonomous Robots, 2004, 17, 223-245.	3.2	265
75	Cooperative Transport of Objects of Different Shapes and Sizes. Lecture Notes in Computer Science, 2004, , 106-117.	1.0	23
76	Group Transport of an Object to a Target That Only Some Group Members May Sense. Lecture Notes in Computer Science, 2004, , 852-861.	1.0	21
77	Evolving Aggregation Behaviors in a Swarm of Robots. Lecture Notes in Computer Science, 2003, , 865-874.	1.0	82
78	Object transport by modular robots that self-assemble. , 0, , .		28
79	Transport of an object by six pre-attached robots interacting via physical links. , 0, , .		28