
Rodrigo Lopez-Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complementary Medicine and Therapies, 2022, 22, 39.	2.7	7
2	Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in Physiology, 2021, 12, 662739.	2.8	75
3	Chemical Characterization of Lavandula dentata Essential Oil Cultivated in Chile and Its Antibiofilm Effect against Candida albicans. Planta Medica, 2020, 86, 1225-1234.	1.3	10
4	Anthelmintic and metabolomic analyses of chicory (Cichorium intybus) identify an industrial by-product with potent in vitro antinematodal activity. Veterinary Parasitology, 2020, 280, 109088.	1.8	20
5	In vitro and in vivo activity of voriconazole and benznidazole combination on trypanosoma cruzi infection models. Acta Tropica, 2020, 211, 105606.	2.0	9
6	New multifunctional heterobinuclear palladium (II) complexes based on organometallic dithiocarbazate ligands. Applied Organometallic Chemistry, 2020, 34, e5788.	3.5	4
7	Tamoxifen in horses: pharmacokinetics and safety study. Irish Veterinary Journal, 2019, 72, 5.	2.1	2
8	Reconsidering the Role of Cyclooxygenase Inhibition in the Chemotherapeutic Value of NO-Releasing Aspirins for Lung Cancer. Molecules, 2019, 24, 1924.	3.8	3
9	Searching for Drug Synergy Against Cancer Through Polyamine Metabolism Impairment: Insight Into the Metabolic Effect of Indomethacin on Lung Cancer Cells. Frontiers in Pharmacology, 2019, 10, 1670.	3.5	12
10	Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Frontiers in Microbiology, 2018, 9, 1961.	3.5	20
11	Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasites and Vectors, 2018, 11, 475.	2.5	51
12	Organometallic tosyl hydrazones: Synthesis, characterization, crystal structures and in vitro evaluation for anti- Mycobacterium tuberculosis and antiproliferative activities. Polyhedron, 2017, 131, 40-45.	2.2	19
13	Chronic Chagas cardiomyopathy: a therapeutic challenge and future strategies. Emerging Topics in Life Sciences, 2017, 1, 579-584.	2.6	0
14	Pentamidine antagonizes the benznidazole's effect inÂvitro, and lacks of synergy inÂvivo: Implications about the polyamine transport as an anti-Trypanosoma cruzi target. Experimental Parasitology, 2016, 171, 23-32.	1.2	13
15	Evaluation of the Novel Antichagasic Activity of [1,2,3]Triazolo[1,5-a]pyridine Derivatives. Current Topics in Medicinal Chemistry, 2016, 17, 399-411.	2.1	5
16	Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS ONE, 2015, 10, e0136852.	2.5	30
17	Acute chagas outbreaks: molecular and biological features of Trypanosoma cruzi isolates, and clinical aspects of acute cases in Santander, Colombia. Parasites and Vectors, 2015, 8, 608.	2.5	10
18	Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin. PLoS Neglected Tropical Diseases, 2015, 9, e0003770.	3.0	26

Rodrigo Lopez-Muñoz

#	Article	IF	CITATIONS
19	Metformin and cancer: Between the bioenergetic disturbances and the antifolate activity. Pharmacological Research, 2015, 101, 102-108.	7.1	46
20	Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi. Acta Tropica, 2014, 134, 1-9.	2.0	35
21	Toxic and therapeutic effects of Nifurtimox and Benznidazol on Trypanosoma cruzi ex vivo infection of human placental chorionic villi explants. Acta Tropica, 2014, 132, 112-118.	2.0	27
22	2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic and Medicinal Chemistry, 2014, 22, 4609-4620.	3.0	59
23	Key Proteins in the Polyamine-Trypanothione Pathway as Drug Targets Against Trypanosoma cruzi. Current Medicinal Chemistry, 2014, 21, 1757-1771.	2.4	12
24	Protection of vascular endothelium by aspirin in a murine model of chronic Chagas' disease. Parasitology Research, 2013, 112, 2731-2739.	1.6	24
25	Dehydroepiandrosterone effect on Plasmodium falciparum and its interaction with antimalarial drugs. Experimental Parasitology, 2013, 133, 114-120.	1.2	4
26	Benznidazole prevents endothelial damage in an experimental model of Chagas disease. Acta Tropica, 2013, 127, 6-13.	2.0	29
27	Protective Role of Acetylsalicylic Acid in Experimental Trypanosoma cruzi Infection: Evidence of a 15-epi-Lipoxin A4-Mediated Effect. PLoS Neglected Tropical Diseases, 2013, 7, e2173.	3.0	46
28	Medicinal Plants of Chile: Evaluation of their Anti-Trypanosoma cruzi Activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2013, 68, 198-202.	1.4	7
29	Medicinal Plants of Chile: Evaluation of their Anti-Trypanosoma cruzi Activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2013, 68, 0198.	1.4	1
30	Role of matrix metalloproteinases 2 and 9 in exÂvivo Trypanosoma cruzi infection of human placental chorionic villi. Placenta, 2012, 33, 991-997.	1.5	21
31	Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 670-678.	3.9	12
32	Roles of Trypanosoma cruzi calreticulin in parasite–host interactions and in tumor growth. Molecular Immunology, 2012, 52, 133-140.	2.2	31
33	Trypanosoma cruzi induces apoptosis in ex vivo infected human chorionic villi. Placenta, 2011, 32, 356-361.	1.5	37
34	ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti-Trypanosoma cruzi agents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 1004-1012.	3.9	19
35	Trypanosoma cruzi: In vitro effect of aspirin with nifurtimox and benznidazole. Experimental Parasitology, 2010, 124, 167-171.	1.2	30
36	Chagas disease: Present status of pathogenic mechanisms and chemotherapy. Biological Research, 2010, 43, .	3.4	51

#	ARTICLE	IF	CITATIONS
37	Chagas disease: Present status of pathogenic mechanisms and chemotherapy. Biological Research, 2010, 43, 323-31.	3.4	26
38	Buthionine Sulfoximine Has Anti- <i>Trypanosoma cruzi</i> Activity in a Murine Model of Acute Chagas' Disease and Enhances the Efficacy of Nifurtimox. Antimicrobial Agents and Chemotherapy, 2008, 52, 1837-1839.	3.2	34
39	Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 2005, 49, 126-130.	3.2	84
40	Photoreduction of oxoisoaporphines. Another example of a formal hydride-transfer mechanism. Photochemical and Photobiological Sciences, 2004, 3, 194-199.	2.9	13