Keita Nomura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055053/publications.pdf

Version: 2024-02-01

	840776		1199594
13	550	11	12
papers	citations	h-index	g-index
1.0	10	1.0	500
13	13	13	582
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy and Environmental Science, 2019, 12, 1542-1549.	30.8	154
2	Oxidationâ€Resistant and Elastic Mesoporous Carbon with Singleâ€Layer Graphene Walls. Advanced Functional Materials, 2016, 26, 6418-6427.	14.9	102
3	Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. Carbon, 2018, 129, 854-862.	10.3	70
4	Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges. Nature Communications, 2019, 10, 2559.	12.8	46
5	Synthesis of graphene mesosponge <i>via</i> catalytic methane decomposition on magnesium oxide. Journal of Materials Chemistry A, 2021, 9, 14296-14308.	10.3	42
6	Formation mechanism of zeolite-templated carbons. Tanso, 2017, 2017, 169-174.	0.1	27
7	Effect of carbon surface on degradation of supercapacitors in a negative potential range. Journal of Power Sources, 2020, 457, 228042.	7.8	26
8	Quantifying Carbon Edge Sites on Depressing Hydrogen Evolution Reaction Activity. Nano Letters, 2020, 20, 5885-5892.	9.1	23
9	Nano-Confinement of Insulating Sulfur in the Cathode Composite of All-Solid-State Li–S Batteries Using Flexible Carbon Materials with Large Pore Volumes. ACS Applied Materials & amp; Interfaces, 2021, 13, 38613-38622.	8.0	16
10	Quantitative analysis of the formation mechanism of tightly bound rubber by using carbon-coated alumina nanoparticles as a model filler. Carbon, 2021, 173, 870-879.	10.3	15
11	Elucidation of oxygen reduction reaction and nanostructure of platinum-loaded graphene mesosponge for polymer electrolyte fuel cell electrocatalyst. Electrochimica Acta, 2021, 370, 137705.	5.2	13
12	Edgeless porous carbon coating for durable and powerful lead-carbon batteries. Carbon, 2021, 185, 419-427.	10.3	12
13	Adsorption properties of templated nanoporous carbons comprising 1–2 graphene layers. , 2022, 1, 123-135.		4