Mariusz Mrózek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054682/publications.pdf

Version: 2024-02-01

933410 888047 20 284 10 17 citations h-index g-index papers 22 22 22 378 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. EPJ Quantum Technology, 2015, 2, .	6.3	56
2	Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond. Physical Review B, 2014, 89, .	3.2	36
3	Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds. Applied Physics Letters, 2015, 107, 013505.	3.3	32
4	Preparation of yttria powders co-doped with Nd3+, and La3+ using EDTA gel processes for application in transparent ceramics. Journal of the European Ceramic Society, 2017, 37, 4129-4140.	5.7	26
5	Coherent population oscillations with nitrogen-vacancy color centers in diamond. Physical Review B, 2016, 94, .	3.2	22
6	Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers. Materials, 2019, 12, 2951.	2.9	20
7	Synthesis and Physicochemical Properties of Yttrium Oxide Doped with Neodymium and Lanthanum. Journal of Electronic Materials, 2014, 43, 3611-3617.	2.2	16
8	Optical and magneto-optical properties of Nd0.1La0.1Y1.8O3 transparent ceramics. Journal of Luminescence, 2019, 209, 333-339.	3.1	12
9	Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes. Carbon, 2022, 196, 10-19.	10.3	11
10	The measurement of Faraday effect of translucent material in the entire visible spectrum. Measurement: Journal of the International Measurement Confederation, 2020, 162, 107912.	5.0	10
11	Magnetically-sensitive nanodiamond thin-films on glass fibers. Optical Materials Express, 2022, 12, 444.	3.0	9
12	Magnetically sensitive fiber probe with nitrogen-vacancy center nanodiamonds integrated in a suspended core. Optics Express, 2022, 30, 19573.	3.4	7
13	Characterization of strong NVâ^' gradient in the e-beam irradiated diamond sample. Diamond and Related Materials, 2021, 120, 108689.	3.9	6
14	Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond. Materials, 2021, 14, 833.	2.9	5
15	Microwave spectroscopy for diagnostics of nitrogen vacancy defects in diamond samples. Photonics Letters of Poland, 2013, 5, .	0.4	5
16	Integration of Fluorescent, NV-Rich Nanodiamond Particles with AFM Cantilevers by Focused Ion Beam for Hybrid Optical and Micromechanical Devices. Coatings, 2021, 11, 1332.	2.6	5
17	Tellurite Glass Rods with Submicronâ€Size Diamonds as Photonic Magnetic Field and Temperature Sensors. Advanced Quantum Technologies, 2022, 5, .	3.9	3
18	Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers. Photonics Letters of Poland, 2021, 13, 28.	0.4	1

#	Article	IF	CITATIONS
19	Optical Characterization of Nitrogen-Vacancy Centers Created by Proton Implantation in Diamond. Acta Physica Polonica A, 2020, 137, 9-13.	0.5	1
20	Diamond nanocrystals with nitrogen-vacancy centers as new type temperature sensors. , 2016, , 526-527.	0.1	0