List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054283/publications.pdf Version: 2024-02-01

	57758	95266
5,413	44	68
citations	h-index	g-index
192	192	4579
docs citations	times ranked	citing authors
	citations 192	5,41344citationsh-index192192

LETIZIA SAMBDI

#	Article	IF	CITATIONS
1	Itaconic-Acid-Based Sustainable Poly(ester amide) Resin for Stereolithography. Macromolecules, 2022, 55, 3087-3095.	4.8	8
2	4-Phenyl-1,2,3-triazoles as Versatile Ligands for Cationic Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8509-8520.	4.0	6
3	Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes. Accounts of Chemical Research, 2021, 54, 1492-1505.	15.6	57
4	Synthesis of Ultrasmall Single-Crystal Gold–Silver Alloy Nanotriangles and Their Application in Photothermal Therapy. Nanomaterials, 2021, 11, 912.	4.1	14
5	Surface-Stabilization of Ultrathin Gold Nanowires for Capacitive Sensors in Flexible Electronics. ACS Applied Nano Materials, 2021, 4, 8668-8673.	5.0	11
6	Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Advances, 2021, 11, 39004-39026.	3.6	32
7	Biocompatible pectin-based hybrid hydrogels for tissue engineering applications. New Journal of Chemistry, 2021, 45, 22386-22395.	2.8	11
8	New Photosensitizers Based on Heteroleptic Cu I Complexes and CO 2 Photocatalytic Reduction with [Ni II (cyclam)]Cl 2. Chemistry - A European Journal, 2020, 26, 9929-9937.	3.3	26
9	Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced Excited-State Energy and Blue Emission. Inorganic Chemistry, 2020, 59, 16238-16250.	4.0	12
10	Surface modification of nanocellulose through carbamate link for a selective release of chemotherapeutics. Cellulose, 2020, 27, 8503-8511.	4.9	11
11	Phosphorescent bio-based resin for digital light processing (DLP) 3D-printing. Green Chemistry, 2020, 22, 6212-6224.	9.0	29
12	<p>Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 9909-9937.	6.7	64
13	Giuseppe Bartoli (1941–2020). Angewandte Chemie - International Edition, 2020, 59, 6962-6962.	13.8	0
14	Luminescent methacrylic copolymers with side-chain cyclometalated iridium(III) complexes. Dyes and Pigments, 2019, 160, 188-197.	3.7	7
15	1-Methyl-1,4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. Journal of Organic Chemistry, 2019, 84, 13655-13664.	3.2	17
16	Carbazoleâ€Terpyridine Donorâ€Acceptor Dyads with Rigid π onjugated Bridges. ChemPlusChem, 2019, 84, 1353-1365.	2.8	11
17	Blue-emitting bolaamphiphilic zwitterionic iridium(<scp>iii</scp>) complex. Dalton Transactions, 2019, 48, 3664-3670.	3.3	4
18	Hydrogen Transfer Activation via Stabilization of Coordinatively Vacant Sites: Tuning Long-Range Ï€-System Electronic Interaction between Ru(0) and NHC Pendants. Organometallics, 2019, 38, 1041-1051.	2.3	14

#	Article	IF	CITATIONS
19	Phosphorescent iridium-containing nanomicelles: synthesis, characterization and preliminary applications in nanomedical imaging. RSC Advances, 2018, 8, 34162-34167.	3.6	2
20	Click-Derived Triazolylidenes as Chelating Ligands: Achievement of a Neutral and Luminescent Iridium(III)–Triazolide Complex. Inorganic Chemistry, 2018, 57, 11673-11686.	4.0	35
21	New nitrogenâ€rich heterocycles for organoâ€modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polymer Engineering and Science, 2017, 57, 621-630.	3.1	31
22	Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2017, 56, 10584-10595.	4.0	36
23	Photocatalytic Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates. ACS Catalysis, 2017, 7, 5357-5362.	11.2	41
24	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(<scp>iii</scp>) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. Chemical Science, 2017, 8, 1613-1620.	7.4	45
25	Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites. AlP Conference Proceedings, 2016, , .	0.4	2
26	A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes. Inorganic Chemistry, 2016, 55, 7912-7919.	4.0	51
27	Hybrid cholesterol-based nanocarriers containing phosphorescent Ir complexes: in vitro imaging on glioblastoma cell line. RSC Advances, 2015, 5, 1091-1096.	3.6	6
28	A chelating diisocyanide ligand for cyclometalated lr(<scp>iii</scp>) complexes with strong and tunable luminescence. Faraday Discussions, 2015, 185, 233-248.	3.2	16
29	New heterometallic Ir(iii)2–Eu(iii) complexes: white light emission from a single molecule. Dalton Transactions, 2015, 44, 37-40.	3.3	10
30	Introducing a New Family of Biotinylated Ir(III)-Pyridyltriazole Lumophores: Synthesis, Photophysics, and Preliminary Study of Avidin-Binding Properties. Organometallics, 2014, 33, 6154-6164.	2.3	24
31	1.08 Organocerium Reagents. , 2014, , 267-277.		2
32	Microwave-Assisted Synthesis of Functionalized Shvo-Type Complexes. Organometallics, 2014, 33, 2814-2819.	2.3	31
33	Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 7709-7721.	4.0	72
34	Carbazole-terpyridine donor–acceptor luminophores. RSC Advances, 2013, 3, 6507.	3.6	18
35	Extreme Tuning of Redox and Optical Properties of Cationic Cyclometalated Iridium(III) Isocyanide Complexes. Organometallics, 2013, 32, 460-467.	2.3	49
36	Triple Click to Tripodal Triazole-Based Ligands - Synthesis and Characterization of Blue-Emitting Ce3+Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 2432-2439.	2.0	17

#	Article	IF	CITATIONS
37	Group 14 Metalloles. Properties, Synthesis and Potential Applications: From Organic Electronics to Soft Materials. Mini-Reviews in Organic Chemistry, 2013, 10, 254-267.	1.3	7
38	Recent Developments on the Synthesis and Cleavage of tert-Butyl Ethers and Esters for Synthetic Purposes and Fuel Additive Uses. Current Organic Synthesis, 2012, 9, 137-148.	1.3	9
39	A new tetraarylcyclopentadienone based low molecular weight gelator: synthesis, self-assembly properties and anion recognition. New Journal of Chemistry, 2012, 36, 1469.	2.8	24
40	Perchloric Acid and Its Salts: Very Powerful Catalysts in Organic Chemistry. Chemical Reviews, 2010, 110, 3501-3551.	47.7	90
41	Controlling Stereoselectivity in the Aminocatalytic Enantioselective Mannich Reaction of Aldehydes with In Situ Generated Nâ€Carbamoyl Imines. Chemistry - A European Journal, 2010, 16, 6069-6076.	3.3	44
42	Applications of CeCl ₃ as an Environmental Friendly Promoter in Organic Chemistry. Chemical Reviews, 2010, 110, 6104-6143.	47.7	95
43	Ultrasound-promoted hydrogelation of terpyridine derivatives. New Journal of Chemistry, 2010, 34, 2093.	2.8	48
44	Asymmetric Iminium Ion Catalysis with a Novel Bifunctional Primary Amine Thiourea: Controlling Adjacent Quaternary and Tertiary Stereocenters. Chemistry - A European Journal, 2009, 15, 7846-7849.	3.3	159
45	Recent Development about the Use of Pyrocarbonates as Activator in Organic Synthesis: A Review. Current Organic Synthesis, 2009, 6, 79-101.	1.3	3
46	Magnesium perchlorate as efficient Lewis acid for the Knoevenagel condensation between β-diketones and aldehydes. Tetrahedron Letters, 2008, 49, 2555-2557.	1.4	79
47	Quaternary Stereogenic Carbon Atoms in Complex Molecules by an Asymmetric, Organocatalytic, Tripleâ€Cascade Reaction. Chemistry - A European Journal, 2008, 14, 4788-4791.	3.3	104
48	Multicomponent Domino Reaction Promoted by Mg(ClO ₄) ₂ : Highly Efficient Access to Functionalized 1,4â€Dihydropyridines. European Journal of Organic Chemistry, 2008, 2008, 3970-3975.	2.4	17
49	Aminocatalytic Enantioselective <i>antiâ€</i> Mannich Reaction of Aldehydes with Inâ€Situ Generated <i>N</i> bz and <i>N</i> â€Boc Imines. Angewandte Chemie - International Edition, 2008, 47, 8700-8702.	13.8	98
50	Organocatalytic Asymmetric Sulfaâ€Michael Addition to α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2008, 350, 49-53.	4.3	145
51	Magnesium Perchlorate as Efficient Lewis Acid: A Simple and Convenient Route to 1,4-Dihydropyridines. Synlett, 2007, 2007, 2897-2901.	1.8	9
52	Reaction of Dicarbonates with Carboxylic Acids Catalyzed by Weak Lewis Acids: General Method for the Synthesis of Anhydrides and Esters. Synthesis, 2007, 2007, 3489-3496.	2.3	57
53	Organocatalytic asymmetric hydrophosphination of nitroalkenes. Chemical Communications, 2007, , 722-724.	4.1	93
54	Organocatalytic Asymmetric Friedelâ^'Crafts Alkylation of Indoles with Simple α,β-Unsaturated Ketones. Organic Letters, 2007, 9, 1403-1405.	4.6	300

#	Article	IF	CITATIONS
55	Organocatalytic Asymmetric Hydrophosphination of α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 4504-4506.	13.8	164
56	Taking Up the Cudgels for Perchlorates: Uses and Applications in Organic Reactions under Mild Conditions. European Journal of Organic Chemistry, 2007, 2007, 2037-2049.	2.4	23
57	Organocatalytic Asymmetric βâ€Hydroxylation of α,βâ€Unsaturated Ketones. European Journal of Organic Chemistry, 2007, 2007, 5492-5495.	2.4	79
58	Alcohols and Di-tert-butyl Dicarbonate:Â How the Nature of the Lewis Acid Catalyst May Address the Reaction to the Synthesis oftert-Butyl Ethers. Journal of Organic Chemistry, 2006, 71, 9580-9588.	3.2	44
59	Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds ChemInform, 2006, 37, no.	0.0	Ο
60	Organocatalytic Asymmetric Conjugate Addition of 1,3-Dicarbonyl Compounds to Maleimides. Angewandte Chemie - International Edition, 2006, 45, 4966-4970.	13.8	147
61	Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds. Angewandte Chemie - International Edition, 2006, 45, 340-340.	13.8	0
62	Solvent-Free Carbon–Oxygen Bond Formation Catalysed by CeCl3·7 H2O/Nal: Tetrahydropyranylation of Hydroxy Groups. European Journal of Organic Chemistry, 2006, 2006, 1476-1482.	2.4	16
63	A New, Mild, General and Efficient Route to Aryl Ethyl Carbonates in Solvent-Free Conditions Promoted by Magnesium Perchlorate. European Journal of Organic Chemistry, 2006, 2006, 4429-4434.	2.4	18
64	tert-Butyl Ethers: Renaissance of an Alcohol Protecting Group. Facile Cleavage with Cerium(III) Chloride/Sodium Iodide. Advanced Synthesis and Catalysis, 2006, 348, 905-910.	4.3	32
65	The First Simple Method of Protection of Hydroxy Compounds as their O-Boc Derivatives under Lewis Acid Catalysis. Synlett, 2006, 2006, 2104-2108.	1.8	22
66	Diastereoselective synthesis of tertiary alcohols by nucleophilic addition to α-substituted-ß-keto esters. Arkivoc, 2006, 2006, 49-58.	0.5	3
67	Unusual and Unexpected Reactivity oft-Butyl Dicarbonate (Boc2O) with Alcohols in the Presence of Magnesium Perchlorate. A New and General Route tot-Butyl Ethers. Organic Letters, 2005, 7, 427-430.	4.6	73
68	Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds. Angewandte Chemie - International Edition, 2005, 44, 6219-6222.	13.8	91
69	Highly Efficient Solvent-Free Condensation of Carboxylic Acids with Alcohols Catalysed by Zinc Perchlorate Hexahydrate, Zn(ClO4)2?6?H2O. Advanced Synthesis and Catalysis, 2005, 347, 33-38.	4.3	47
70	Allylation of Aldehydes Promoted by the Cerium(III) Chloride Heptahydrate/Sodium lodide System: the Dependence of Regio- and Stereocontrol on the Reaction Conditions. Advanced Synthesis and Catalysis, 2005, 347, 1673-1680.	4.3	17
71	A Lewis Acid Mediated Protocol for the Protection of Aryl Amines as Their Boc-Derivatives ChemInform, 2005, 36, no.	0.0	Ο
72	Asymmetric Catalytic Synthesis of Enantiopure N-Protected 1,2-Amino Alcohols ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
73	Highly Diastereoselective Synthesis of ?-Hydroxy Amides from ?-Keto Amides ChemInform, 2005, 36, no.	0.0	0
74	Unusual and Unexpected Reactivity of t-Butyl Dicarbonate (Boc2O) with Alcohols in the Presence of Magnesium Perchlorate. A New and General Route to t-Butyl Ethers ChemInform, 2005, 36, no.	0.0	0
75	Efficient Preparation of 2-Indolyl-1-nitroalkane Derivatives Employing Nitroalkenes as Versatile Michael Acceptors: New Practical Linear Approach to Alkyl 9H-β-Carboline-4-carboxylate ChemInform, 2005, 36, no.	0.0	0
76	Direct Catalytic Synthesis of Enantiopure 5-Substituted Oxazolidinones from Racemic Terminal Epoxides ChemInform, 2005, 36, no.	0.0	0
77	Efficient Preparation of 2-Indolyl-1-nitroalkane Derivatives Employing Nitroalkenes as Versatile Michael Acceptors:  New Practical Linear Approach to Alkyl 9H-l²-Carboline-4-carboxylate. Journal of Organic Chemistry, 2005, 70, 1941-1944.	3.2	90
78	Direct Catalytic Synthesis of Enantiopure 5-Substituted Oxazolidinones from Racemic Terminal Epoxides. Organic Letters, 2005, 7, 1983-1985.	4.6	53
79	Highly Stereoselective Reduction of β-Keto Amides: The First General and Efficient Approach to N-mono- and non-Substitutedanti-α-Alkyl β-Hydroxy Amides. Synlett, 2004, 2004, 73-76.	1.8	6
80	Zn(ClO4)2·6H2O as a Powerful Catalyst for the Conversion of β-Ketoesters into β-Enamino Esters. Synlett, 2004, 2004, 0239-0242.	1.8	80
81	Highly Diastereoselective Synthesis of β-Hydroxy Amides from β-Keto Amides. Synthesis, 2004, 2004, 3092-3096.	2.3	7
82	A Lewis Acid-Mediated Protocol for the Protection of Aryl Amines as their Boc-Derivatives. Synlett, 2004, 2004, 1794-1798.	1.8	68
83	Solvent-Free Indoles Addition to Carbonyl Compounds Promoted by CeCl3·7H2O-Nal-SiO2: An Efficient Method for the Synthesis of Streptindole. Synthesis, 2004, 2004, 895-900.	2.3	3
84	Lewis Acid-Mediated Diastereoselective Reduction ofN-Protectedβ-Amino Ketones: Influence of the Nature of the Metal Atom and of the Nitrogen Protecting Group. European Journal of Organic Chemistry, 2004, 2004, 2359-2366.	2.4	12
85	The CeCl3×nH2O/Nal System in Organic Synthesis: An Efficient Water Tolerant Lewis Acid Promoter. ChemInform, 2004, 35, no.	0.0	0
86	Zn(ClO4)2×6H2O as a Powerful Catalyst for a Practical Acylation of Alcohols with Acid Anhydrides ChemInform, 2004, 35, no.	0.0	0
87	Highly Stereoselective Reduction of β-Keto Amides: The First General and Efficient Approach to N-Mono- and Non-Substituted anti-α-Alkyl β-Hydroxy Amides ChemInform, 2004, 35, no.	0.0	0
88	Zn(ClO4)2×6H2O as a Powerful Catalyst for the Conversion of β-Ketoesters into β-Enamino Esters ChemInform, 2004, 35, no.	0.0	0
89	Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3×7H2O—Nal System as a Lewis Acid ChemInform, 2004, 35, no.	0.0	0
90	Asymmetric Aminolysis of Aromatic Epoxides: A Facile Catalytic Enantioselective Synthesis of anti-β-Amino Alcohols ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
91	Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3·7H2Oâ^'Nal System as a Lewis Acid. Journal of Organic Chemistry, 2004, 69, 1290-1297.	3.2	45
92	Asymmetric Catalytic Synthesis of EnantiopureN-Protected 1,2-Amino Alcohols. Organic Letters, 2004, 6, 3973-3975.	4.6	89
93	Asymmetric Aminolysis of Aromatic Epoxides:  A Facile Catalytic Enantioselective Synthesis ofanti-β-Amino Alcohols. Organic Letters, 2004, 6, 2173-2176.	4.6	116
94	Zn(ClO4)2·6H2O as a Powerful Catalyst for a Practical Acylation of Alcohols with Acid Anhydrides. European Journal of Organic Chemistry, 2003, 2003, 4611-4617.	2.4	73
95	The Michael Addition of Indoles to α,β-Unsaturated Ketones Catalyzed by CeCl3×7H2O—Nal Combination Supported on Silica Gel ChemInform, 2003, 34, no.	0.0	0
96	An Efficient Procedure for the Preparation of (E)-α-Alkylidenecycloalkanones Mediated by a CeCl3×7H2O—Nal System. Novel Methodology for the Synthesis of (S)-(-)-Pulegone ChemInform, 2003, 34, no.	0.0	0
97	The Michael Addition of Indoles to α,β-Unsaturated Ketones Catalyzed by CeCl3·7H2Oâ ``Nal Combination Supported on Silica Gel1. Journal of Organic Chemistry, 2003, 68, 4594-4597.	3.2	150
98	The CeCl3·nH2O/Nal System in Organic Synthesis: An Efficient Water Tolerant Lewis Acid Promoter. Synlett, 2003, 2003, 2101-2116.	1.8	64
99	An Efficient Procedure for the Preparation of (E)-α-Alkylidenecycloalkanones Mediated by a CeCl3·7H2Oâ^'Nal System. Novel Methodology for the Synthesis of (S)-(â^')-Pulegone1. Journal of Organic Chemistry, 2002, 67, 9111-9114.	3.2	44
100	Deprotection of t-butyldimethylsilyl ethers promoted by cerium(IV) triflate. Tetrahedron Letters, 2002, 43, 5945-5947.	1.4	46
101	LiClO4–acyl anhydrides complexes as powerful acylating reagents of aromatic compounds in solvent free conditions. Tetrahedron Letters, 2002, 43, 6331-6333.	1.4	46
102	Selective Deprotection of N-Boc-Protectedtert-Butyl Ester Amino Acids by the CeCl3·7H2Oâ^'Nal System in Acetonitrile. Journal of Organic Chemistry, 2001, 66, 4430-4432.	3.2	59
103	One-pot highly stereoselective reduction of β-keto amides to syn -γ-aminols. Tetrahedron Letters, 2001, 42, 8811-8815.	1.4	19
104	Addition of organocerium reagents to homoallyl alcohols. Tetrahedron Letters, 2001, 42, 8833-8835.	1.4	14
105	Highly stereoselective titanium-mediated addition of organocerium reagents to β-keto amides: an efficient synthesis of stereodefined β-hydroxy amides having a tertiary alcoholic fragment. Tetrahedron Letters, 2001, 42, 6093-6096.	1.4	15
106	Highly Stereoselective and Efficient Addition of Organocerium Reagents to syn-β-Alkyl-β-hydroxy-α-methyl Ketones by Way of Their Titanium Alkoxides â՞' Synthesis of Complex 1,3-Diol Units with Three Stereodefined Centres. European Journal of Organic Chemistry, 2001, 2001, 2901.	2.4	19
107	An Efficient Diastereoselective Reduction of α-Alkyl-β-keto Carbonitriles with TiCl4/BH3 or LiBH4/CeCl3 to syn- or anti-α-Alkyl-β-hydroxy Carbonitriles. European Journal of Organic Chemistry, 2001, 2001, 2971.	2.4	13
108	A Highly Diastereoselective TiCl4-Mediated Reduction of β-Hydroxy Ketones with BH3·py — A Very Efficient and General Synthesis of syn-1,3-Diols. European Journal of Organic Chemistry, 2001, 2001, 4679.	2.4	15

#	Article	IF	CITATIONS
109	Conjugate Addition of Amines to α,β-Enones Promoted by CeCl3·7H2Oâ^'Nal System Supported in Silica Gel. Journal of Organic Chemistry, 2001, 66, 9052-9055.	3.2	166
110	Mechanism and Extensibility of the Reaction. European Journal of Organic Chemistry, 2000, 2000, 99-104.	2.4	17
111	The Role of theα-Stereogenic Center in the Control of Stereoselection in the Reduction ofα-Alkyl-β-hydroxy Ketones: A Highly Diastereoselective Protocol for the Synthesis of 1,2-syn-2-Alkyl-1,3-diols. Chemistry - A European Journal, 2000, 6, 2590-2598.	3.3	15
112	A Novel Route to the Vinyl Sulfide Nine-Membered Macrocycle Moiety of Griseoviridinâ€. Journal of Organic Chemistry, 2000, 65, 4553-4559.	3.2	98
113	A Simple, Efficient, and General Method for the Conversion of Alcohols into Alkyl Iodides by a CeCl3·7H2O/Nal System in Acetonitrile. Journal of Organic Chemistry, 2000, 65, 2830-2833.	3.2	66
114	TiCl4-Mediated Reduction of 1,3-Diketones with BH3â^'Pyridine Complex:  A Highly Diastereoselective Method for the Synthesis of syn-1,3-Diols. Organic Letters, 2000, 2, 45-47.	4.6	25
115	A Simple Method for the Selective Deprotection ofp-Methoxybenzyl Ethers by Cerium(III) Chloride Heptahydrate and Sodium Iodide Journal of Organic Chemistry, 2000, 65, 4782-4782.	3.2	9
116	An Efficient Procedure for the Diastereoselective Dehydration of β-Hydroxy Carbonyl Compounds by CeCl3·7H2O/Nal System. Organic Letters, 2000, 2, 1791-1793.	4.6	28
117	Highly diastereoselective reduction of α-alkyl-β-hydroxy ketones with sodium and lithium boron hydrides via their titanium alcoholates. Tetrahedron Letters, 1999, 40, 2845-2848.	1.4	6
118	Cerium(III) Chloride Catalyzed Michael Reaction of 1,3-Dicarbonyl Compounds and Enones in the Presence of Sodium Iodide Under Solvent-Free Conditions. European Journal of Organic Chemistry, 1999, 1999, 617-620.	2.4	54
119	A Simple Method for the Selective Deprotection ofp-Methoxybenzyl Ethers by Cerium(III) Chloride Heptahydrate and Sodium Iodide. Journal of Organic Chemistry, 1999, 64, 5696-5699.	3.2	82
120	Reversed Stereochemical Control in the Presence of CeCl3and TiCl4in the Lewis Acid Mediated Reduction of α-Alkyl-β-keto Esters by Metal Hydrides. A General Methodology for the Diastereoselective Synthesis ofsyn- andanti-α-Alkyl-β-hydroxy Esters. Journal of Organic Chemistry, 1999, 64, 1986-1992.	3.2	53
121	Cerium(III) Chloride Catalyzed Michael Reaction of 1,3-Dicarbonyl Compounds and Enones in the Presence of Sodium Iodide Under Solvent-Free Conditions. European Journal of Organic Chemistry, 1999, 1999, 617-620.	2.4	1
122	Internal Lewis Acid Coordination as a Powerful Tool To Promote Highly Stereoselective Alkylation ofα-Alkyl-β-Hydroxy Ketones with Grignard Reagents. Chemistry - A European Journal, 1998, 4, 2154-2161.	3.3	17
123	Reactivity of Organocerium Compounds with Allyl Alcohols. Journal of Organic Chemistry, 1998, 63, 9559-9560.	3.2	13
124	Synthesis of β,γ-Unsaturated Ketones via Cerium-Mediated Addition of Organolithiums to Silylated Enaminones. Journal of Organic Chemistry, 1998, 63, 3745-3747.	3.2	28
125	Efficient Diastereoselective Syntheses oferythro- orthreo-α-Alkyl-β-hydroxy Sulfones by Reductions of α-Alkyl-β-keto Sulfones with TiCl4/BH3or LiEt3BH/CeCl3, Respectively. Journal of Organic Chemistry, 1998, 63, 3624-3630.	3.2	50
126	A Mild, Efficient, and Selective Method for the Desilylation of More Common Trialkylsilyl Ethers by Cerium(III) Chloride Heptahydrate and Sodium Iodide in Acetonitrile. Synlett, 1998, 1998, 209-211.	1.8	53

#	Article	IF	CITATIONS
127	Cerium(III) Chloride, a Novel Reagent for Nonaqueous Selective Conversion of Dioxolanes to Carbonyl Compounds. Journal of Organic Chemistry, 1997, 62, 4183-4184.	3.2	111
128	A new protocol for the synthesis of α′,β′-unsaturated 1,3-diketones. Tetrahedron, 1997, 53, 2585-2590.	1.9	9
129	1,2 asymmetric induction in the TiCl4 mediated alkylation of α-methyl-β-silyloxy ketones with Grignard reagents. Tetrahedron Letters, 1997, 38, 3785-3788.	1.4	10
130	Opposite Stereochemical Effects Exerted by CeCl ₃ and TiCl ₄ on the Lewis Acid Mediated Reduction of αâ€Alkylâ€Î²â€ketophosphine Oxides with Metallic Hydrides: A Highly Stereoselective Protocol for the Synthesis of syn and anti αâ€alkylâ€Î²â€Hydroxyphosphine Oxides. Chemistry - A European Journal, 1997, 3, 1941-1950.	3.3	32
131	A Stereoselective Synthesis of (<i>E</i>)ậ€Î±, βâ€Unsaturated Ketones Involving the Reactions of Organocerium Reagents with Secondary βâ€Enamino Ketones. Chemistry - A European Journal, 1996, 2, 913-918.	3.3	33
132	Organo cerium reagents in organic chemistry: General method of synthesis of alkyl substituted 1,3-diols by RLi-CeCl3 addition to β-hydroxyketones. Tetrahedron Letters, 1996, 37, 2293-2296.	1.4	13
133	TiCl4 Mediated LiBH4 reduction of β-ketophosphine oxides: a high stereoselective route to the synthesis of anti-β-hydroxyphosphine oxides. Tetrahedron Letters, 1996, 37, 7421-7424.	1.4	29
134	Cer(<scp>III</scp>)â€chloridâ€unterstützte nucleophile Addition von Organolithiumreagentien an αâ€Alkylâ€Î²â€ketophosphinoxide: eine neue Methode für die Synthese stereochemisch definierter trisubstituierter Olefine. Angewandte Chemie, 1995, 107, 2163-2164.	2.0	6
135	Cerium(III) Chloride Promoted Nucleophilic Addition of Organolithium Reagents toα-Alkyl-β-Ketophosphine Oxides: A New Protocol for the Synthesis of Stereochemically Defined Trisubstituted Olefins. Angewandte Chemie International Edition in English, 1995, 34, 2046-2048.	4.4	41
136	Cerium chloride (III) promoted nucleophilic addition of organolithium reagents to α-diphenylphosphinoyl ketones. An efficient method for the synthesis of horner-wittig intermediates. Tetrahedron Letters, 1994, 35, 8453-8456.	1.4	28
137	Cerium(III) chloride mediated Michael addition of RMgX to nitroenes: A very efficient access to complex nitroalkanes. Tetrahedron Letters, 1994, 35, 8651-8654.	1.4	24