Chern-Hooi Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054129/publications.pdf

Version: 2024-02-01

36 4,049 27 37 37 papers citations h-index g-index

39 39 39 3653
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Organocatalyzed atom transfer radical polymerization driven by visible light. Science, 2016, 352, 1082-1086.	6.0	649
2	Visible-Light-Promoted Câ \in Cross-Coupling via Intermolecular Charge Transfer. Journal of the American Chemical Society, 2017, 139, 13616-13619.	6.6	347
3	Organocatalyzed Atom Transfer Radical Polymerization Using $\langle i \rangle N \langle i \rangle$ -Aryl Phenoxazines as Photoredox Catalysts. Journal of the American Chemical Society, 2016, 138, 11399-11407.	6.6	300
4	Intramolecular Charge Transfer and Ion Pairing in <i>N,N</i> Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2017, 139, 348-355.	6.6	207
5	Structure–Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts. Journal of the American Chemical Society, 2018, 140, 5088-5101.	6.6	202
6	Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.	1.7	196
7	C–N Cross-Coupling via Photoexcitation of Nickel–Amine Complexes. Journal of the American Chemical Society, 2018, 140, 7667-7673.	6.6	176
8	Mechanism of Homogeneous Reduction of CO ₂ by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization. Journal of the American Chemical Society, 2013, 135, 142-154.	6.6	151
9	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	6.6	150
10	Organocatalyzed Birch Reduction Driven by Visible Light. Journal of the American Chemical Society, 2020, 142, 13573-13581.	6.6	144
11	Reduction of CO ₂ to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine. Journal of the American Chemical Society, 2014, 136, 16081-16095.	6.6	131
12	Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications, 2017, 38, 1700040.	2.0	121
13	Energy Transfer to Ni-Amine Complexes in Dual Catalytic, Light-Driven C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2019, 141, 19479-19486.	6.6	118
14	Bistable and photoswitchable states of matter. Nature Communications, 2018, 9, 2804.	5.8	111
15	Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chemical Reviews, 2022, 122, 5476-5518.	23.0	106
16	Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules, 2019, 52, 236-248.	2.2	105
17	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie - International Edition, 2020, 59, 3209-3217.	7.2	98
18	Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e ^{â€"} /1H ⁺ Transfers: Initiation with Parallels to Photosynthesis. Journal of the American Chemical Society, 2014, 136, 7418-7427.	6.6	78

#	Article	IF	CITATIONS
19	A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polymer Chemistry, 2018, 9, 4523-4534.	1.9	78
20	Benzimidazoles as Metal-Free and Recyclable Hydrides for CO ₂ Reduction to Formate. Journal of the American Chemical Society, 2019, 141, 272-280.	6.6	67
21	Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Low ppm Catalyst Loading. Macromolecules, 2019, 52, 747-754.	2.2	65
22	Light-Driven Intermolecular Charge Transfer Induced Reactivity of Ethynylbenziodoxol(on)e and Phenols. Journal of the American Chemical Society, 2018, 140, 12829-12835.	6.6	61
23	Catalytic Reduction of CO ₂ by Renewable Organohydrides. Journal of Physical Chemistry Letters, 2015, 6, 5078-5092.	2.1	59
24	Roles of the Lewis Acid and Base in the Chemical Reduction of CO ₂ Catalyzed by Frustrated Lewis Pairs. Inorganic Chemistry, 2013, 52, 10062-10066.	1.9	58
25	Solvent effects on the intramolecular charge transfer character of ⟨i>N⟨ i>,⟨i>N⟨ i>â€diaryl dihydrophenazine catalysts for organocatalyzed atom transfer radical polymerization. Journal of Polymer Science Part A, 2017, 55, 3017-3027.	2.5	56
26	Dynamic and Responsive DNA-like Polymers. Journal of the American Chemical Society, 2018, 140, 13594-13598.	6.6	45
27	Controlling Polymer Composition in Organocatalyzed Photoredox Radical Ring-Opening Polymerization of Vinylcyclopropanes. Journal of the American Chemical Society, 2019, 141, 13268-13277.	6.6	41
28	Radical Addition to $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$. Diaryl Dihydrophenazine Photoredox Catalysts and Implications in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2021, 54, 4507-4516.	2.2	27
29	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie, 2020, 132, 3235-3243.	1.6	25
30	Phenothiazines, Dihydrophenazines, and Phenoxazines: Sustainable Alternatives to Precious-Metal-Based Photoredox Catalysts. Aldrichimica Acta, 2019, 52, 7-21.	4.0	17
31	Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy. Journal of Physical Chemistry B, 2018, 122, 1278-1288.	1,2	15
32	Transition-Metal-Free, Visible-Light-Promoted C–S Cross-Coupling through Intermolecular Charge Transfer. Synlett, 2018, 29, 2449-2455.	1.0	15
33	Dihydropteridine/Pteridine as a 2H ⁺ /2e ^{â€"} Redox Mediator for the Reduction of CO ₂ to Methanol: A Computational Study. Journal of Physical Chemistry B, 2017, 121, 4158-4167.	1,2	13
34	Renewable Hydride Donors for the Catalytic Reduction of CO ₂ : A Thermodynamic and Kinetic Study. Journal of Physical Chemistry B, 2018, 122, 10179-10189.	1.2	13
35	Frontispiece: Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, .	1.7	1
36	Titelbild: Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers (Angew. Chem. 8/2020). Angewandte Chemie, 2020, 132, 2937-2937.	1.6	0