List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer Research, 2022, 82, 1140-1152.	0.4	52
2	Preclinical <i>In Vivo</i> Validation of the RAD51 Test for Identification of Homologous Recombination-Deficient Tumors and Patient Stratification. Cancer Research, 2022, 82, 1646-1657.	0.4	40
3	SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. British Journal of Cancer, 2021, 124, 951-962.	2.9	40
4	Olaparib increases the therapeutic index of hemithoracic irradiation compared with hemithoracic irradiation alone in a mouse lung cancer model. British Journal of Cancer, 2021, 124, 1809-1819.	2.9	5
5	Radiopotentiation Profiling of Multiple Inhibitors of the DNA Damage Response for Early Clinical Development. Molecular Cancer Therapeutics, 2021, 20, 1614-1626.	1.9	12
6	Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Research, 2021, 49, 8665-8683.	6.5	25
7	Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}- <i>N</i> -methylpyridine-2-carboxamic (AZD5305): A PARP1–DNA Trapper with High Selectivity for PARP1 over PARP2 and Other PARPs. Journal of Medicinal Chemistry, 2021, 64, 14498-14512.	le 2.9	50
8	Development of Next-Generation Poly(ADP-Ribose) Polymerase 1–Selective Inhibitors. Cancer Journal (Sudbury, Mass), 2021, 27, 521-528.	1.0	10
9	Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Molecular Cancer Therapeutics, 2020, 19, 13-25.	1.9	104
10	Identifying and Overcoming Mechanisms of PARP Inhibitor Resistance in Homologous Recombination Repair-Deficient and Repair-Proficient High Grade Serous Ovarian Cancer Cells. Cancers, 2020, 12, 1503.	1.7	17
11	Differential therapeutic effects of PARP and ATR inhibition combined with radiotherapy in the treatment of subcutaneous versus orthotopic lung tumour models. British Journal of Cancer, 2020, 123, 762-771.	2.9	11
12	AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nature Communications, 2019, 10, 5065.	5.8	195
13	Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Research, 2019, 79, 3762-3775.	0.4	56
14	Sequential Therapy with PARP and WEE1 Inhibitors Minimizes Toxicity while Maintaining Efficacy. Cancer Cell, 2019, 35, 851-867.e7.	7.7	156
15	PARP Inhibitors: Extending Benefit Beyond <i>BRCA</i> -Mutant Cancers. Clinical Cancer Research, 2019, 25, 3759-3771.	3.2	265
16	Rapid activation of epithelial-mesenchymal transition drives PARP inhibitor resistance in <i>Brca2</i> -mutant mammary tumours. Oncotarget, 2019, 10, 2586-2606.	0.8	22
17	Targeting the replication stress response in cancer. , 2018, 188, 155-167.		124
18	BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell, 2018, 33, 401-416.e8.	7.7	215

#	Article	IF	CITATIONS
19	PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Molecular Cancer Research, 2018, 16, 222-232.	1.5	108
20	ATR kinase inhibitor AZD6738 potentiates CD8+ T cell–dependent antitumor activity following radiation. Journal of Clinical Investigation, 2018, 128, 3926-3940.	3.9	136
21	Androgen Receptor Inhibitor Enhances the Antitumor Effect of PARP Inhibitor in Breast Cancer Cells by Modulating DNA Damage Response. Molecular Cancer Therapeutics, 2018, 17, 2507-2518.	1.9	20
22	A <scp>RAD</scp> 51 assay feasible in routine tumor samples calls <scp>PARP</scp> inhibitor response beyond <scp>BRCA</scp> mutation. EMBO Molecular Medicine, 2018, 10, .	3.3	169
23	Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. British Journal of Cancer, 2018, 119, 1401-1409.	2.9	175
24	The Combination of the PARP Inhibitor Olaparib and the WEE1 Inhibitor AZD1775 as a New Therapeutic Option for Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 5153-5164.	3.2	126
25	Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nature Cell Biology, 2018, 20, 954-965.	4.6	291
26	Abstract LB-273: A head-to-head comparison of the properties of five clinical PARP inhibitors identifies new insights that can explain both the observed clinical efficacy and safety profiles. Cancer Research, 2018, 78, LB-273-LB-273.	0.4	16
27	Fanconi anemia and homologous recombination gene variants are associated with functional DNA repair defects <i>in vitro</i> and poor outcome in patients with advanced head and neck squamous cell carcinoma. Oncotarget, 2018, 9, 18198-18213.	0.8	37
28	AZD6738, A Novel Oral Inhibitor of ATR, Induces Synthetic Lethality with ATM Deficiency in Gastric Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 566-577.	1.9	108
29	Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation. Scientific Reports, 2017, 7, 41892.	1.6	15
30	Long-Term Responders on Olaparib Maintenance in High-Grade Serous Ovarian Cancer: Clinical and Molecular Characterization. Clinical Cancer Research, 2017, 23, 4086-4094.	3.2	114
31	ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nature Communications, 2017, 8, 1392.	5.8	67
32	Antiâ€ŧumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. International Journal of Cancer, 2017, 140, 109-119.	2.3	48
33	Neoadjuvant olaparib targets hypoxia to improve radioresponse in a homologous recombination-proficient breast cancer model. Oncotarget, 2017, 8, 87638-87646.	0.8	10
34	The PARP Inhibitor AZD2461 Provides Insights into the Role of PARP3 Inhibition for Both Synthetic Lethality and Tolerability with Chemotherapy in Preclinical Models. Cancer Research, 2016, 76, 6084-6094.	0.4	73
35	Expression of potential biomarkers associated with homologous recombination repair in patients with ovarian or triple-negative breast cancer. Cancer Biomarkers, 2016, 16, 145-152.	0.8	5
36	A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds. Cell, 2016, 167, 260-274.e22.	13.5	376

#	Article	IF	CITATIONS
37	Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Science Translational Medicine, 2016, 8, 362ps17.	5.8	518
38	An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells. F1000Research, 2016, 5, 736.	0.8	10
39	ATM protein is deficient in over 40% of lung adenocarcinomas. Oncotarget, 2016, 7, 57714-57725.	0.8	35
40	Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiotherapy and Oncology, 2015, 116, 358-365.	0.3	115
41	Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer. Journal of Clinical Oncology, 2015, 33, 3858-3865.	0.8	248
42	Targeting the DNA Damage Response in Cancer. Molecular Cell, 2015, 60, 547-560.	4.5	1,093
43	The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer <i>in vivo</i> . Oncotarget, 2015, 6, 44289-44305.	0.8	202
44	Functional <i>Ex Vivo</i> Assay to Select Homologous Recombination–Deficient Breast Tumors for PARP Inhibitor Treatment. Clinical Cancer Research, 2014, 20, 4816-4826.	3.2	144
45	Investigation of Radiosensitivity Gene Signatures in Cancer Cell Lines. PLoS ONE, 2014, 9, e86329.	1.1	43
46	Validation of the BRCA1 antibody MS110 and the utility of BRCA1 as a patient selection biomarker in immunohistochemical analysis of breast and ovarian tumours. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 269-279.	1.4	24
47	Loss of 53BP1 Causes PARP Inhibitor Resistance in <i>Brca1</i> -Mutated Mouse Mammary Tumors. Cancer Discovery, 2013, 3, 68-81.	7.7	428
48	ATM Kinase Inhibition Preferentially Sensitizes p53-Mutant Glioma to Ionizing Radiation. Clinical Cancer Research, 2013, 19, 3189-3200.	3.2	167
49	Concordance of ATM (Ataxia Telangiectasia Mutated) Immunohistochemistry between Biopsy or Metastatic Tumor Samples and Primary Tumors in Gastric Cancer Patients. Pathobiology, 2013, 80, 127-137.	1.9	52
50	RAD51C-Deficient Cancer Cells Are Highly Sensitive to the PARP Inhibitor Olaparib. Molecular Cancer Therapeutics, 2013, 12, 865-877.	1.9	116
51	Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle, 2012, 11, 1167-1173.	1.3	86
52	Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle, 2012, 11, 3837-3850.	1.3	144
53	Inhibition of PARP-1 by Olaparib (AZD2281) Increases the Radiosensitivity of a Lung Tumor Xenograft. Molecular Cancer Therapeutics, 2011, 10, 1949-1958.	1.9	168
54	Tumor Growth Inhibition by Olaparib in <i>BRCA2</i> Germline-Mutated Patient-Derived Ovarian Cancer Tissue Xenografts. Clinical Cancer Research, 2011, 17, 783-791.	3.2	67

#	Article	IF	CITATIONS
55	Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9851-9856.	3.3	301
56	ATM Deficiency Sensitizes Mantle Cell Lymphoma Cells to Poly(ADP-Ribose) Polymerase-1 Inhibitors. Molecular Cancer Therapeutics, 2010, 9, 347-357.	1.9	172
57	Sensitivity to Poly(ADP-ribose) Polymerase (PARP) Inhibition Identifies Ubiquitin-specific Peptidase 11 (USP11) as a Regulator of DNA Double-strand Break Repair. Journal of Biological Chemistry, 2010, 285, 14565-14571.	1.6	114
58	Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Molecular Cancer Therapeutics, 2009, 8, 2894-2902.	1.9	331
59	Poly(ADP-Ribose) Polymerase-1 Inhibitor Treatment Regresses Autochthonous <i>Brca2/p53</i> -Mutant Mammary Tumors <i>In vivo</i> and Delays Tumor Relapse in Combination with Carboplatin. Cancer Research, 2009, 69, 3850-3855.	0.4	99
60	Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from <i>BRCA</i> Mutation Carriers. New England Journal of Medicine, 2009, 361, 123-134.	13.9	3,312
61	4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2 <i>H</i> -phthalazin-1-one: A Novel Bioavailable Inhibitor of Poly(ADP-ribose) Polymerase-1. Journal of Medicinal Chemistry, 2008, 51, 6581-6591.	2.9	494
62	Selective Inhibition of BRCA2-Deficient Mammary Tumor Cell Growth by AZD2281 and Cisplatin. Clinical Cancer Research, 2008, 14, 3916-3925.	3.2	299
63	High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17079-17084.	3.3	854
64	Deficiency in the Repair of DNA Damage by Homologous Recombination and Sensitivity to Poly(ADP-Ribose) Polymerase Inhibition. Cancer Research, 2006, 66, 8109-8115.	0.4	1,172
65	Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nature Cell Biology, 2005, 7, 493-500.	4.6	135
66	A Role for Polymerase η in the Cellular Tolerance to Cisplatin-Induced Damage. Cancer Research, 2005, 65, 9799-9806.	0.4	198
67	hnRNP K: An HDM2 Target and Transcriptional Coactivator of p53 in Response to DNA Damage. Cell, 2005, 123, 1065-1078.	13.5	305
68	The overexpression of specialized DNA polymerases in cancer. DNA Repair, 2005, 4, 583-593.	1.3	218
69	Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO Journal, 2004, 23, 3421-3429.	3.5	67
70	Interaction with CBP/p300 enables the bovine papillomavirus type 1 E6 oncoprotein to downregulate CBP/p300-mediated transactivation by p53. Journal of General Virology, 2000, 81, 2617-2623.	1.3	42
71	Nuclear Matrix Attachment Regions of Human Papillomavirus Type 16 Repress or Activate the E6 Promoter, Depending on the Physical State of the Viral DNA. Journal of Virology, 2000, 74, 2489-2501.	1.5	68
72	On the specificity and effects on transcription of P-element insertions at theyellowlocus ofDrosophila melanogaster. Nucleic Acids Research, 1988, 16, 3039-3052.	6.5	16