Shmuel Yaccoby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers. Genome Research, 2022, 32, 1343-1354.	5.5	8
2	PHF19 inhibition as a therapeutic target in multiple myeloma. Current Research in Translational Medicine, 2021, 69, 103290.	1.8	5
3	Microhomology-mediated end joining drives complex rearrangements and overexpression of <i>MYC </i> and <i>PVT1 </i> in multiple myeloma. Haematologica, 2020, 105, 1055-1066.	3.5	42
4	CST6 Is a Small Autocrine Molecule That Targets Myeloma Growth and Bone Destruction. Blood, 2020, 136, 21-21.	1.4	0
5	Mesenchymal stem cells gene signature in highâ€risk myeloma bone marrow linked to suppression of distinct IGFBP2â€expressing small adipocytes. British Journal of Haematology, 2019, 184, 578-593.	2.5	18
6	The Pattern of Mesenchymal Stem Cell Expression Is an Independent Marker of Outcome in Multiple Myeloma. Clinical Cancer Research, 2018, 24, 2913-2919.	7.0	30
7	Two States of Myeloma Stem Cells. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 38-43.	0.4	12
8	Mesenchymal Stem Cells Gene Signature in High-Risk Myeloma Bone Marrow Linked to Suppression of Distinct IGFBP2-Expressing Small Adipocytes. Blood, 2018, 132, 4448-4448.	1.4	0
9	Proliferation and Molecular Risk Score of Low Risk Myeloma Cells Are Increased in High Risk Microenvironment Via Augmented Bioavailability of Growth Factors. Blood, 2018, 132, 1929-1929.	1.4	0
10	Extensive Remineralization of Large Pelvic Lytic Lesions Following Total Therapy Treatment in Patients With Multiple Myeloma. Journal of Bone and Mineral Research, 2017, 32, 1261-1266.	2.8	9
11	The prognostic value of the depth of response in multiple myeloma depends on the time of assessment, risk status and molecular subtype. Haematologica, 2017, 102, e313-e316.	3.5	26
12	The level of deletion 17p and bi-allelic inactivation of <i>TP53</i> has a significant impact on clinical outcome in multiple myeloma. Haematologica, 2017, 102, e364-e367.	3.5	57
13	Adverse Metaphase Cytogenetics Can Be Overcome by Adding Bortezomib and Thalidomide to Fractionated Melphalan Transplants. Clinical Cancer Research, 2017, 23, 2665-2672.	7.0	13
14	Monoclonal antibody therapy in multiple myeloma: where do we stand and where are we going?. Immunotherapy, 2016, 8, 367-384.	2.0	6
15	A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Molecular Cancer Therapeutics, 2016, 15, 241-250.	4.1	58
16	Signatures of Mesenchymal Cell Lineages and Microenvironment Factors Are Dysregulated in High Risk Myeloma. Blood, 2016, 128, 2065-2065.	1.4	1
17	Myeloma Exosomes Prime the Microenvironment to Support Survival and Growth of Myeloma Cells. Blood, 2016, 128, 2067-2067.	1.4	2
18	Extensive Regional Intra-Clonal Heterogeneity in Multiple Myeloma - Implications for Diagnostics, Risk Stratification and Targeted Treatment. Blood, 2016, 128, 3278-3278.	1.4	2

SHMUEL YACCOBY

#	Article	IF	CITATIONS
19	Mesenchymal Stem Cells Preconditioned with Myeloma Cells from High-Risk Patients Support the Growth of Myeloma Cells from Low-Risk Patients. Blood, 2016, 128, 3304-3304.	1.4	3
20	The Clinical Impact of Macrofocal Disease in Multiple Myeloma Differs Between Presentation and Relapse. Blood, 2016, 128, 4431-4431.	1.4	8
21	The Metabolic Phenotype of Myeloma Plasma Cells Differs Between Active and Residual Disease States. Blood, 2016, 128, 4438-4438.	1.4	0
22	Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120). Haematologica, 2015, 100, 1214-1221.	3.5	44
23	Primary myeloma interaction and growth in coculture with healthy donor hematopoietic bone marrow. BMC Cancer, 2015, 15, 864.	2.6	11
24	A peptide nucleic acid targeting nuclear <i>RAD51</i> sensitizes multiple myeloma cells to melphalan treatment. Cancer Biology and Therapy, 2015, 16, 976-986.	3.4	14
25	The Composition and Clinical Impact of Focal Lesions and Their Impact on the Microenvironment in Myeloma. Blood, 2015, 126, 1806-1806.	1.4	2
26	Melphalan Affects Genes Critical for Myeloma Survival, Homing, and Response to Cytokines and Chemokines. Blood, 2015, 126, 1808-1808.	1.4	2
27	Upfront 28-Day Metronomic Therapy for High-Risk Multiple Myeloma (HRMM). Blood, 2015, 126, 1843-1843.	1.4	1
28	High Risk Multiple Myeloma Demonstrates Marked Spatial Genomic Heterogeneity Between Focal Lesions and Random Bone Marrow; Implications for Targeted Therapy and Treatment Resistance. Blood, 2015, 126, 20-20.	1.4	7
29	The Impact of Combination Chemotherapy and Tandem Stem Cell Transplant on Clonal Substructure and Mutational Pattern at Relapse of MM. Blood, 2015, 126, 372-372.	1.4	1
30	Stem Cell-like Characteristics of MM Plasma Cells Vary By ROS Levels: Implications for Targeted Therapy. Blood, 2015, 126, 1820-1820.	1.4	1
31	Molecular Subtyping and Risk Stratification for the Classification of Myeloma. Blood, 2015, 126, 4173-4173.	1.4	Ο
32	Extending Metronomic Therapy to 28 Days (metro28) for Relapsed Refractory Multiple Myeloma (RRMM). Blood, 2015, 126, 5395-5395.	1.4	0
33	CYR61/CCN1 overexpression in the myeloma microenvironment is associated with superior survival and reduced bone disease. Blood, 2014, 124, 2051-2060.	1.4	26
34	Curing Multiple Myeloma (MM) with Total Therapy (TT). Blood, 2014, 124, 195-195.	1.4	3
35	Higher Expressions of PTH Receptor Type 1 and/or 2 in Bone Marrow Is Associated to Longer Survival in Newly Diagnosed Myeloma Patients Enrolled in Total Therapy 3. Blood, 2014, 124, 3409-3409.	1.4	5
36	A Peptide Nucleic Acid Targeting Nuclear Rad51 Sensitizes Myeloma Cells to Melphalan Chemotoxicity Both in Vitro and in Vivo. Blood, 2014, 124, 3529-3529.	1.4	5

Shmuel Yaccoby

#	Article	IF	CITATIONS
37	Sustained Growth of Primary Myeloma Cells in Coculture with Whole Donor Bone Marrow Is Associated with Induced Secretion of the Microenvironmental Mediator of Cytokinesis, Hemicentin-1. Blood, 2014, 124, 3403-3403.	1.4	0
38	Dinaciclib, a CDK Inhibitor, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Blood, 2014, 124, 479-479.	1.4	5
39	Identifying a Gene Expression (GEP)-Based Model Predicting for Progression from AMM to Cmm Requiring Therapy in S0120 Patients Treated at Mirt. Blood, 2014, 124, 2078-2078.	1.4	0
40	ATRA Upregulates Cell Surface CD1D on Myeloma Cells and Sensitizes Them to iNKT Cell-Mediated Lysis. Blood, 2014, 124, 2102-2102.	1.4	1
41	Low BCL11A Expression in the Myeloma Microenvironment at Diagnosis Is Associated with Early Development of MDS Cytogenetic Abnormalities and Poor Overall Survival. Blood, 2014, 124, 2012-2012.	1.4	0
42	NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity. Experimental Hematology, 2013, 41, 547-557.e2.	0.4	39
43	Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease. American Journal of Hematology, 2013, 88, 463-471.	4.1	53
44	Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica, 2013, 98, 71-78.	3.5	80
45	Characterization of the Molecular Mechanism of the Bone-Anabolic Activity of Carfilzomib in Multiple Myeloma. PLoS ONE, 2013, 8, e74191.	2.5	39
46	MAF Protein Elicits Innate Resistance To Bortezomib In Multiple Myeloma. Blood, 2013, 122, 281-281.	1.4	1
47	Healthy Donor Whole Bone Marrow Cells Preconditioned With Myeloma Patient Serum Support Long-Term Survival Of Primary Myeloma and Reveal Altered Microenvironmental Pathways. Blood, 2013, 122, 3118-3118.	1.4	0
48	Inhibition Of BTK Activity In Myeloma Cells Within a Supportive Microenvironment Promotes Their Growth But Suppresses Metastasis. Blood, 2013, 122, 4432-4432.	1.4	0
49	Macrophages Activation By ICAM1 Antibody Combined With Lenalidomide Has Enhanced Anti-Myeloma Activity In a Supportive Microenvironment In Vivo and In Vitro. Blood, 2013, 122, 1926-1926.	1.4	1
50	Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica, 2012, 97, 1348-1356.	3.5	97
51	Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. Journal of Bone and Mineral Research, 2012, 27, 1635-1648.	2.8	34
52	A prospective evaluation of the biochemical, metabolic, hormonal and structural bone changes associated with bortezomib response in multiple myeloma patients. Haematologica, 2011, 96, 333-336.	3.5	52
53	Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone. Stem Cells, 2011, 29, 263-273.	3.2	71
54	Secreted Frizzled-Related Protein-3 (sFRP3) Is Produced by Myeloma Cells and Augments Wnt3a-Induced Differentiation of Mesenchymal Stem Cells and OPG Production in Osteoblasts. Blood, 2011, 118, 808-808.	1.4	1

Shmuel Yaccoby

#	Article	IF	CITATIONS
55	Inducible Heme Oxygenase 1 (HMOX1) Promotes Osteoblastogenesis, and Inhibits Osteoclastogenesis and Myeloma-Induced Bone Disease. Blood, 2011, 118, 627-627.	1.4	3
56	Deregulated Cellular Iron Metabolism Factors Mediate Iron Overload in Myeloma Cells and Osteoclasts, and Promote Myeloma Growth and Bone Disease,. Blood, 2011, 118, 3941-3941.	1.4	0
57	Cell Surface CXCR4 and BTK Expression Are Associated in Myeloma Cells and Osteoclast Precursors and Mediate Myeloma Cell Homing and Clonogenicity, and Osteoclastogenesis. Blood, 2011, 118, 884-884.	1.4	6
58	Autologous Expanded Natural Killer Cells As a New Therapeutic Option for High-Risk Myeloma. Blood, 2011, 118, 2918-2918.	1.4	8
59	Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood, 2010, 115, 61-70.	1.4	79
60	Advances in the understanding of myeloma bone disease and tumour growth. British Journal of Haematology, 2010, 149, 311-321.	2.5	82
61	Osteoblastogenesis and tumor growth in myeloma. Leukemia and Lymphoma, 2010, 51, 213-220.	1.3	48
62	The role of the proteasome in bone formation and osteoclastogenesis. IBMS BoneKEy, 2010, 7, 147-155.	0.0	2
63	Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-angiogenic Agent. Radiation Research, 2010, 173, 809-817.	1.5	13
64	Consequences of Daily Administered Parathyroid Hormone on Myeloma Growth, Bone Disease, and Molecular Profiling of Whole Myelomatous Bone. PLoS ONE, 2010, 5, e15233.	2.5	38
65	Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease. British Journal of Haematology, 2009, 145, 775-787.	2.5	25
66	Fenretinide inhibits myeloma cell growth, osteoclastogenesis and osteoclast viability. Cancer Letters, 2009, 284, 175-181.	7.2	17
67	The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo. American Journal of Hematology, 2009, 84, 6-14.	4.1	132
68	The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood, 2009, 114, 1803-1812.	1.4	94
69	Role of decorin in the antimyeloma effects of osteoblasts. Blood, 2008, 112, 159-168.	1.4	102
70	Wnt3a signaling within bone inhibits multiple myeloma bone disease and tumor growth. Blood, 2008, 112, 374-382.	1.4	87
71	Changes in the Expression of Proteasome Genes in Tumor Cells Following Short-Term Proteasome Inhibitor Therapy Predicts Survival in Multiple Myeloma Treated with Bortezomib-Containing Multi-Agent Chemotherapy. Blood, 2008, 112, 733-733.	1.4	10
72	Magnetic Resonance Imaging in Multiple Myeloma: Diagnostic and Clinical Implications. Journal of Clinical Oncology, 2007, 25, 1121-1128.	1.6	369

SHMUEL YACCOBY

#	Article	IF	CITATIONS
73	Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood, 2007, 109, 2106-2111.	1.4	414
74	The oxidative stress response regulates DKK1 expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood, 2007, 109, 4470-4477.	1.4	80
75	Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated multiple myeloma patients. American Journal of Hematology, 2007, 82, 831-833.	4.1	34
76	Establishment and exploitation of hyperdiploid and nonâ€hyperdiploid human myeloma cell lines. British Journal of Haematology, 2007, 138, 802-811.	2.5	27
77	Exploitation of Novel Hyperdiploid and Nonhyperdiploid Myeloma Cell Lines for Studying Innovative Interventions for Myeloma and Its Associated Bone Disease Blood, 2007, 110, 548-548.	1.4	2
78	Inhibitors of Fibroblast Activation Protein (FAP) Inhibit Primary Myeloma Growth and Osteoclastogenesis Ex Vivo and In Vivo Blood, 2007, 110, 813-813.	1.4	1
79	Small Leucine-Rich Proteoglycans (SLRPs) Are Involved in the Anti-Myeloma Response of Osteoblasts Blood, 2007, 110, 815-815.	1.4	8
80	The molecular classification of multiple myeloma. Blood, 2006, 108, 2020-2028.	1.4	997
81	Response to Bortezomib and Activation of Osteoblasts in Multiple Myeloma. Clinical Lymphoma and Myeloma, 2006, 7, 109-114.	1.4	46
82	Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. British Journal of Haematology, 2006, 133, 83-92.	2.5	51
83	Targeting β2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell, 2006, 10, 295-307.	16.8	92
84	Fenretinide (4HPR) Inhibits Growth of Myeloma Cells in Their Microenvironment and Is a Potent Inhibitor of Angiogenesis and Osteoclastogenesis Blood, 2006, 108, 3480-3480.	1.4	0
85	JNK Regulates DKK1 Expression in Multiple Myeloma Cells Blood, 2006, 108, 3411-3411.	1.4	0
86	Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica, 2006, 91, 192-9.	3.5	127
87	Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. British Journal of Haematology, 2005, 131, 71-73.	2.5	180
88	The Phenotypic Plasticity of Myeloma Plasma Cells as Expressed by Dedifferentiation into an Immature, Resilient, and Apoptosis-Resistant Phenotype. Clinical Cancer Research, 2005, 11, 7599-7606.	7.0	78
89	The Anti-Myeloma Effect of Bortezomib Is Associated with Osteoblastic Activity Blood, 2005, 106, 510-510.	1.4	2
90	Anti-Myeloma Response to Bortezomib Is Associated with Increased Osteoblast Activity and Bone Formation in Primary Myelomatous SCID-rab Mice Blood, 2005, 106, 3450-3450.	1.4	1

SHMUEL YACCOBY

#	Article	IF	CITATIONS
91	Cancer and the Microenvironment. Cancer Research, 2004, 64, 2016-2023.	0.9	175
92	Consequences of interactions between the bone marrow stroma and myeloma. The Hematology Journal, 2003, 4, 310-314.	1.4	32
93	Antimyeloma efficacy of thalidomide in the SCID-hu model. Blood, 2002, 100, 4162-4168.	1.4	63
94	Myeloma interacts with the bone marrow microenvironment â€`to induce osteoclastogenesis and is dependent on osteoclast activity. British Journal of Haematology, 2002, 116, 278-290.	2.5	271
95	Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood, 2000, 96, 2528-2536.	1.4	103
96	The Proliferative Potential of Myeloma Plasma Cells Manifest in the SCID-hu Host. Blood, 1999, 94, 3576-3582.	1.4	155
97	Primary Myeloma Cells Growing in SCID-hu Mice: A Model for Studying the Biology and Treatment of Myeloma and Its Manifestations. Blood, 1998, 92, 2908-2913.	1.4	238
98	Primary Myeloma Cells Growing in SCID-hu Mice: A Model for Studying the Biology and Treatment of Myeloma and Its Manifestations. Blood, 1998, 92, 2908-2913.	1.4	6