
MarÃ-a-Isabel I Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8053940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cholinergic Modulation of Neostriatal Output: A Functional Antagonism between Different Types of Muscarinic Receptors. Journal of Neuroscience, 1999, 19, 3629-3638.	1.7	107
2	Blockade of noradrenergic receptors in the basolateral amygdala impairs taste memory. European Journal of Neuroscience, 2003, 18, 2605-2610.	1.2	98
3	Cortical cholinergic activity is related to the novelty of the stimulus. Brain Research, 2000, 882, 230-235.	1.1	97
4	Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6478-6482.	3.3	95
5	Glutamatergic activity in the amygdala signals visceral input during taste memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11417-11422.	3.3	87
6	Role of cholinergic system on the construction of memories: Taste memory encoding. Neurobiology of Learning and Memory, 2003, 80, 211-222.	1.0	80
7	Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory With Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala. Learning and Memory, 2004, 11, 312-317.	0.5	74
8	Basolateral amygdala glutamatergic activation enhances taste aversion through NMDA receptor activation in the insular cortex. European Journal of Neuroscience, 2005, 22, 2596-2604.	1.2	69
9	Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala. Learning and Memory, 2008, 15, 468-476.	0.5	60
10	Molecular Signals into the Insular Cortex and Amygdala During Aversive Gustatory Memory Formation. Cellular and Molecular Neurobiology, 2004, 24, 25-36.	1.7	59
11	The role of cortical cholinergic pre- and post-synaptic receptors in taste memory formation. Neurobiology of Learning and Memory, 2003, 79, 184-193.	1.0	48
12	Taste memory formation: Latest advances and challenges. Behavioural Brain Research, 2010, 207, 232-248.	1.2	48
13	Learning Impairment and Cholinergic Deafferentation after Cortical Nerve Growth Factor Deprivation. Journal of Neuroscience, 1997, 17, 3796-3803.	1.7	45
14	Differential effects of 192IgG-saporin and NMDA-induced lesions into the basal forebrain on cholinergic activity and taste aversion memory formation. Brain Research, 1999, 834, 136-141.	1.1	44
15	Redundant Basal Forebrain Modulation in Taste Aversion Memory Formation. Journal of Neuroscience, 1999, 19, 7661-7669.	1.7	39
16	Taste and odor recognition memory: the emotional flavor of life. Reviews in the Neurosciences, 2012, 23, 481-99.	1.4	34
17	Basolateral amygdala noradrenergic activity is involved in the acquisition of conditioned odor aversion in the rat. Neurobiology of Learning and Memory, 2007, 88, 260-263.	1.0	30
18	Cholinergic activity in the insular cortex is necessary for acquisition and consolidation of contextual memory. Neurobiology of Learning and Memory, 2007, 87, 343-351.	1.0	28

#	Article	lF	CITATIONS
19	Opposing Roles of Cholinergic and GABAergic Activity in the Insular Cortex and Nucleus Basalis Magnocellularis during Novel Recognition and Familiar Taste Memory Retrieval. Journal of Neuroscience, 2016, 36, 1879-1889.	1.7	27
20	Differential effects of β-adrenergic receptor blockade in basolateral amygdala or insular cortex on incidental and associative taste learning. Neurobiology of Learning and Memory, 2008, 90, 54-61.	1.0	26
21	Effects of catecholaminergic depletion of the amygdala and insular cortex on the potentiation of odor by taste aversions. Behavioral and Neural Biology, 1993, 60, 189-191.	2.3	25
22	Differential participation of the NBM in the acquisition and retrieval of conditioned taste aversion and Morris water maze. Behavioural Brain Research, 2000, 116, 89-98.	1.2	23
23	Differential effects of bicuculline and muscimol microinjections into the nucleus basalis magnocellularis in taste and place aversive memory formation. Behavioural Brain Research, 2002, 134, 425-431.	1.2	20
24	Differential effects of β-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation. Neuroscience, 2010, 169, 195-202.	1.1	17
25	Differential involvement of cholinergic and beta-adrenergic systems during acquisition, consolidation, and retrieval of long-term memory of social and neutral odors. Behavioural Brain Research, 2009, 202, 19-25.	1.2	12
26	Nucleus of the solitary tract chemical stimulation induces extracellular norepinephrine release in the lateral and basolateral amygdala. Brain Stimulation, 2013, 6, 198-201.	0.7	12
27	Recovery of taste aversion learning induced by fetal neocortex grafts: correlation with in vivo extracellular acetylcholine. Brain Research, 1997, 759, 141-148.	1.1	11
28	Activation of nucleus accumbens NMDA receptors differentially affects appetitive or aversive taste learning and memory. Frontiers in Behavioral Neuroscience, 2012, 6, 13.	1.0	11
29	Blockade of nucleus basalis magnocellularis or activation of insular cortex histamine receptors disrupts formation but not retrieval of aversive taste memory. Neurobiology of Learning and Memory, 2010, 93, 216-220.	1.0	8
30	Histaminergic Modulation of Cholinergic Release from the Nucleus Basalis Magnocellularis into Insular Cortex during Taste Aversive Memory Formation. PLoS ONE, 2014, 9, e91120.	1.1	7
31	The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption. Neuroscience, 2017, 359, 142-150.	1.1	7
32	Acetylcholine determination of microdialysates of fetal neocortex grafts that induce recovery of learning. Brain Research Protocols, 1998, 2, 215-222.	1.7	6
33	Intracellular calcium chelation and pharmacological SERCA inhibition of Ca2+ pump in the insular cortex differentially affect taste aversive memory formation and retrieval. Neurobiology of Learning and Memory, 2011, 96, 192-198.	1.0	5
34	Â-Adrenergic receptors in the insular cortex are differentially involved in aversive vs. incidental context memory formation. Learning and Memory, 2011, 18, 502-507.	0.5	5
35	Differential function of medial prefrontal cortex catecholaminergic receptors after long-term sugar consumption. Behavioural Brain Research, 2019, 356, 495-503.	1.2	5
36	Adrenal Medullary Grafts Restore Olfactory Deficits and Catecholamine Levels of 6-OHDA Amygdala Lesioned Animals. Journal of Neural Transplantation & Plasticity, 1993, 4, 289-297.	0.7	4

#	Article	IF	CITATIONS
37	Graft-induced Recovery of Inhibitory Avoidance Conditioning in Striatal Lesioned Rats is Related to Choline Acetyltransferase Activity. Journal of Neural Transplantation & Plasticity, 1994, 5, 11-16.	0.7	4
38	Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction. NeuroReport, 2014, 25, 386-390.	0.6	4
39	Chemical stimulation or glutamate injections in the nucleus of solitary tract enhance conditioned taste aversion. Behavioural Brain Research, 2015, 278, 202-209.	1.2	4
40	Specific inter-stimulus interval effect of NMDA receptor activation in the insular cortex during conditioned taste aversion. Neurobiology of Learning and Memory, 2019, 164, 107043.	1.0	4
41	Effect of daytime-restricted feeding in the daily variations of liver metabolism and blood transport of serotonin in rat. Physiological Reports, 2015, 3, e12389.	0.7	3
42	Effects of caloric or non-caloric sweetener long-term consumption on taste preferences and new aversive learning. Nutritional Neuroscience, 2020, 23, 128-138.	1.5	3
43	Molecular and biochemical modifications of liver glutamine synthetase elicited by daytime restricted feeding. Liver International, 2014, 34, 1391-1401.	1.9	2
44	Taste association capabilities differ in high- and low-yawning rats versus outbred Sprague–Dawley rats after prolonged sugar consumption. Animal Cognition, 2021, 24, 41-52.	0.9	0
45	Differential Effects of N-methyl-D-aspartate Receptors Activation in the Insular Cortex during Memory Formation and Updating of a Motivational Conflict Task. Neuroscience, 2022, , .	1.1	0