Benoit Hubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8053765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Ânm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
2	The Mars Oxygen Visible Dayglow: A Martian Year of NOMAD/UVIS Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
3	First Observation of the Oxygen 630Ânm Emission in the Martian Dayglow. Geophysical Research Letters, 2021, 48, e2020GL092334.	4.0	8
4	Discrete Aurora on Mars: Spectral Properties, Vertical Profiles, and Electron Energies. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029495.	2.4	12
5	First ICONâ€FUV Nighttime NmF2 and hmF2 Comparison to Ground and Spaceâ€Based Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029360.	2.4	11
6	Dualâ€Lobe Reconnection and Horseâ€Collar Auroras. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028567.	2.4	21
7	Northâ€South Asymmetric Nightside Distorted Transpolar Arcs Within A Framework of Deformed Magnetosphereâ€Ionosphere Coupling: IMFâ€ <i>B</i> _y Dependence, Ionospheric Currents, and Magnetotail Reconnection. Journal of Geophysical Research: Space Physics, 2020, 125, 2020JA027991.	2.4	4
8	Isobar Altitude Variations in the Upper Mesosphere Observed With IUVSâ€MAVEN in Response to Martian Dust Storms. Geophysical Research Letters, 2020, 47, e2020GL087468.	4.0	4
9	Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 2020, 4, 1049-1052.	10.1	13
10	Airglow remote sensing of the seasonal variation of the Martian upper atmosphere: MAVEN limb observations and model comparison. Icarus, 2020, 341, 113666.	2.5	11
11	Examining Local Time Variations in the Gains and Losses of Open Magnetic Flux During Substorms. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027369.	2.4	6
12	Probing the Magnetic Structure of a Pair of Transpolar Arcs With a Solar Wind Pressure Step. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027196.	2.4	5
13	Concurrent Observations Of Magnetic Reconnection From Cluster, IMAGE and SuperDARN: A Comparison Of Reconnection Rates And Energy Conversion. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027264.	2.4	3
14	MAVENâ€IUVS Observations of the CO ₂ ⁺ UV Doublet and CO Cameron Bands in the Martian Thermosphere: Aeronomy, Seasonal, and Latitudinal Distribution. Journal of Geophysical Research: Space Physics, 2019, 124, 5816-5827.	2.4	18
15	The Olâ€135.6Ânm Nighttime Emission in ICONâ€FUV Images: A New Tool for the Observation of Classical Medium‣cale Traveling Ionospheric Disturbances?. Journal of Geophysical Research: Space Physics, 2019, 124, 7670-7686.	2.4	2
16	Kinetic Monte Carlo Model for the Precipitation of High-Energy Protons and Hydrogen Atoms into the Atmosphere of Mars with Taking into Account the Measured Magnetic Field. Astronomy Reports, 2019, 63, 835-845.	0.9	12
17	Characteristics of Mars UV Dayglow Emissions From Atomic Oxygen at 130.4 and 135.6 nm: MAVEN/IUVS Limb Observations and Modeling. Journal of Geophysical Research: Space Physics, 2019, 124, 4809-4832.	2.4	12
18	Lyman-α emission in the Martian proton aurora: Line profile and role of horizontal induced magnetic field. Icarus, 2019, 321, 266-271.	2.5	17

BENOIT HUBERT

#	Article	IF	CITATIONS
19	The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Science Reviews, 2018, 214, 1.	8.1	152
20	The O(¹ S) 297.2â€nm Dayglow Emission: A Tracer of CO ₂ Density Variations in the Martian Lower Thermosphere. Journal of Geophysical Research E: Planets, 2018, 123, 3119-3132.	3.6	14
21	Monte Carlo Simulations of the Interaction of Fast Proton and Hydrogen Atoms With the Martian Atmosphere and Comparison With In Situ Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 5850-5861.	2.4	15
22	Observations of the Proton Aurora on Mars With SPICAM on Board Mars Express. Geophysical Research Letters, 2018, 45, 612-619.	4.0	32
23	Comparative study of largeâ€scale auroral signatures of substorms, steady magnetospheric convection events, and sawtooth events. Journal of Geophysical Research: Space Physics, 2017, 122, 6357-6373.	2.4	19
24	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
25	Changes in the Martian atmosphere induced by auroral electron precipitation. Solar System Research, 2017, 51, 362-372.	0.7	2
26	Transpolar arcs observed simultaneously in both hemispheres. Journal of Geophysical Research: Space Physics, 2017, 122, 6107-6120.	2.4	19
27	Influence of the crustal magnetic field on the Mars aurora electron flux and UV brightness. Icarus, 2017, 282, 127-135.	2.5	17
28	Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes. Annales Geophysicae, 2017, 35, 505-524.	1.6	6
29	What controls the local time extent of flux transfer events?. Journal of Geophysical Research: Space Physics, 2016, 121, 1391-1401.	2.4	21
30	Nonthermal radiative transfer of oxygen 98.9 nm ultraviolet emission: Solving an old mystery. Journal of Geophysical Research: Space Physics, 2015, 120, 10,772.	2.4	3
31	Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 2015, 245, 295-305.	2.5	29
32	Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. Journal of Geophysical Research, 2012, 117, .	3.3	118
33	A superposed epoch investigation of the relation between magnetospheric solar wind driving and substorm dynamics with geosynchronous particle injection signatures. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	16
34	Average auroral configuration parameterized by geomagnetic activity and solar wind conditions. Annales Geophysicae, 2010, 28, 1003-1012.	1.6	23
35	Comparison of the open-closed field line boundary location inferred using IMAGE-FUV SI12 images and EISCAT radar observations. Annales Geophysicae, 2010, 28, 883-892.	1.6	20
36	Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 2010, 115, .	3.3	23

BENOIT HUBERT

#	Article	lF	CITATIONS
37	A superposed epoch analysis of auroral evolution during substorms: Local time of onset region. Journal of Geophysical Research, 2010, 115, .	3.3	30
38	Influences on the radius of the auroral oval. Annales Geophysicae, 2009, 27, 2913-2924.	1.6	82
39	A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open magnetic flux control of substorm intensity. Annales Geophysicae, 2009, 27, 659-668.	1.6	72
40	A statistical study of the open magnetic flux content of the magnetosphere at the time of substorm onset. Geophysical Research Letters, 2009, 36, .	4.0	37
41	Statistical properties of flux closure induced by solar wind dynamic pressure fronts. Journal of Geophysical Research, 2009, 114, .	3.3	14
42	The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations. Planetary and Space Science, 2008, 56, 542-552.	1.7	26
43	Open magnetic flux and magnetic flux closure during sawtooth events. Geophysical Research Letters, 2008, 35, .	4.0	14
44	Response of the expanding/contracting polar cap to weak and strong solar wind driving: Implications for substorm onset. Journal of Geophysical Research, 2008, 113, .	3.3	74
45	On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere. Annales Geophysicae, 2008, 26, 2759-2769.	1.6	48
46	Auroral streamers and magnetic flux closure. Geophysical Research Letters, 2007, 34, .	4.0	7
47	Global morphology of substorm growth phases observed by the IMAGEâ€SI12 imager. Journal of Geophysical Research, 2007, 112, .	3.3	12
48	Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	165
49	Observations of significant flux closure by dual lobe reconnection. Annales Geophysicae, 2007, 25, 1617-1627.	1.6	24
50	Dayside and nightside reconnection rates inferred from IMAGE FUV and Super Dual Auroral Radar Network data. Journal of Geophysical Research, 2006, 111, .	3.3	71
51	Compression of the Earth's magnetotail by interplanetary shocks directly drives transient magnetic flux closure. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	40
52	Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers. Annales Geophysicae, 2006, 24, 751-767.	1.6	8
53	The auroral and ionospheric flow signatures of dual lobe reconnection. Annales Geophysicae, 2006, 24, 3115-3129.	1.6	59
54	Formation and motion of a transpolar arc in response to dayside and nightside reconnection. Journal of Geophysical Research, 2005, 110, .	3.3	83

BENOIT HUBERT

#	Article	IF	CITATIONS
55	Far ultraviolet remote sensing of the isotropy boundary and magnetotail stretching. Journal of Geophysical Research, 2005, 110, .	3.3	12
56	Solar wind control of auroral substorm onset locations observed with the IMAGE-FUV imagers. Journal of Geophysical Research, 2004, 109, .	3.3	30
57	Proton precipitation during transpolar auroral events: Observations with the IMAGE-FUV imagers. Journal of Geophysical Research, 2004, 109, .	3.3	11
58	Propagation of electron and proton shock-induced aurora and the role of the interplanetary magnetic field and solar wind. Journal of Geophysical Research, 2004, 109, .	3.3	51
59	Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse. Geophysical Research Letters, 2003, 30, .	4.0	35
60	Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV. Journal of Geophysical Research, 2002, 107, SMP 15-1-SMP 15-12.	3.3	40
61	Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations. Journal of Geophysical Research, 2002, 107, SIA 5-1.	3.3	32
62	Proton aurora in the cusp. Journal of Geophysical Research, 2002, 107, SMP 2-1.	3.3	115
63	Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements. Journal of Geophysical Research, 2001, 106, 28939-28948.	3.3	58
64	The role of proton precipitation in the excitation of auroral FUV emissions. Journal of Geophysical Research, 2001, 106, 21475-21494.	3.3	35
65	A model of the Lyman-α line profile in the proton aurora. Journal of Geophysical Research, 2000, 105, 15795-15805.	3.3	65
66	Exploring solar-terrestrial interactions via multiple imaging observers. Experimental Astronomy, 0, , 1.	3.7	3