Rosanna Parlato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/805368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic lesions of the noradrenergic system trigger induction of oxidative stress and inflammation in the ventral midbrain. Neurochemistry International, 2022, 155, 105302.	1.9	3
2	Oxidative Stress in Neurodegenerative Diseases. Antioxidants, 2022, 11, 504.	2.2	14
3	<scp>ALS</scp> â€linked <scp>KIF5A ΔExon27</scp> mutant causes neuronal toxicity through gainâ€ofâ€function. EMBO Reports, 2022, 23, .	2.0	25
4	Targeted Ablation of Primary Cilia in Differentiated Dopaminergic Neurons Reduces Striatal Dopamine and Responsiveness to Metabolic Stress. Antioxidants, 2021, 10, 1284.	2.2	7
5	Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death and Disease, 2021, 12, 1139.	2.7	10
6	Structural Fuzziness of the RNA-Organizing Protein SERF Determines a Toxic Gain-of-interaction. Journal of Molecular Biology, 2020, 432, 930-951.	2.0	18
7	Editorial: Emerging Cellular Stress Sensors in Neurological Disorders: Closing in on the Nucleolus and the Primary Cilium. Frontiers in Cellular Neuroscience, 2020, 14, 64.	1.8	Ο
8	Nucleolar stress induces a senescence-like phenotype in smooth muscle cells and promotes development of vascular degeneration. Aging, 2020, 12, 22174-22198.	1.4	16
9	Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nature Communications, 2019, 10, 5094.	5.8	65
10	Integration of the Deacetylase SIRT1 in the Response to Nucleolar Stress: Metabolic Implications for Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 106.	1.4	9
11	rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease. Journal of Molecular Biology, 2019, 431, 1763-1779.	2.0	22
12	Stimulation of noradrenergic transmission by reboxetine is beneficial for a mouse model of progressive parkinsonism. Scientific Reports, 2019, 9, 5262.	1.6	19
13	Targeted Depletion of Primary Cilia in Dopaminoceptive Neurons in a Preclinical Mouse Model of Huntington's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 565.	1.8	10
14	InÂVivo Protein Complementation Demonstrates Presynaptic α-Synuclein Oligomerization and Age-Dependent Accumulation of 8–16-mer Oligomer Species. Cell Reports, 2019, 29, 2862-2874.e9.	2.9	26
15	C9orf72-associated neurodegeneration in ALS-FTD: breaking new ground in ribosomal RNA and nucleolar dysfunction. Cell and Tissue Research, 2018, 373, 351-360.	1.5	26
16	Selektive Degeneration dopaminerger Neurone beim Parkinson-Syndrom: die zunehmende Rolle von verĤderter Kalziumhomöostase und nukleoläer Funktion. E-Neuroforum, 2018, 24, 1-14.	0.2	0
17	RNA Polymerase 1 Is Transiently Regulated by Seizures and Plays a Role in a Pharmacological Kindling Model of Epilepsy. Molecular Neurobiology, 2018, 55, 8374-8387.	1.9	11
18	A09â€Stage- and cell-specific changes of nucleolar activity and integrity are associated with the progression of huntington's disease. , 2018, , .		0

ROSANNA PARLATO

#	Article	IF	CITATIONS
19	Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome. Cell Reports, 2018, 23, 1612-1619.	2.9	42
20	Selective degeneration of dopamine neurons in Parkinson's disease: emerging roles of altered calcium homeostasis and nucleolar function. E-Neuroforum, 2018, 24, A1-A9.	0.2	1
21	Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models. DMM Disease Models and Mechanisms, 2017, 10, 633-643.	1.2	21
22	Transgenic mice lacking CREB and CREM in noradrenergic and serotonergic neurons respond differently to common antidepressants on tail suspension test. Scientific Reports, 2017, 7, 13515.	1.6	22
23	DNA Damage, Neurodegeneration, and Synaptic Plasticity. Neural Plasticity, 2016, 2016, 1-2.	1.0	9
24	Editorial: Neuronal Self-Defense: Compensatory Mechanisms in Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 2016, 9, 499.	1.8	3
25	B20â€Dissecting the role of nucleolar stress in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A16.1-A16.	0.9	Ο
26	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
27	Role of nucleolar dysfunction in neurodegenerative disorders: a game of genes?. AIMS Molecular Science, 2015, 2, 211-224.	0.3	12
28	CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects. Frontiers in Behavioral Neuroscience, 2014, 8, 212.	1.0	18
29	Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling. Neurogenesis (Austin, Tex), 2014, 1, e970883.	1.5	3
30	Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling. Proceedings of the United States of America, 2014, 111, 13499-13504.	3.3	30
31	A genetic mouse model for progressive ablation and regeneration of insulin producing beta-cells. Cell Cycle, 2014, 13, 3948-3957.	1.3	9
32	How Parkinson's disease meets nucleolar stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 791-797.	1.8	71
33	Phasic Dopaminergic Activity Exerts Fast Control of Cholinergic Interneuron Firing via Sequential NMDA, D2, and D1 Receptor Activation. Journal of Neuroscience, 2014, 34, 11549-11559.	1.7	49
34	Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?. Journal of Molecular Medicine, 2013, 91, 541-547.	1.7	89
35	Cell Loss and Autophagy in the Extraâ€Adrenal Chromaffin Organ of Zuckerkandl are Regulated by Glucocorticoid Signalling. Journal of Neuroendocrinology, 2013, 25, 34-47.	1.2	38
36	A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death and Differentiation, 2013, 20, 1455-1464.	5.0	68

ROSANNA PARLATO

#	Article	IF	CITATIONS
37	Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons. Frontiers in Cellular Neuroscience, 2013, 7, 207.	1.8	31
38	Bidirectional Regulation of Intravenous General Anesthetic Actions by α3-containing γ-aminobutyric AcidAReceptors. Anesthesiology, 2013, 118, 562-576.	1.3	7
39	Inactivation of Glucocorticoid Receptor in Noradrenergic System Influences Anxiety- and Depressive-Like Behavior in Mice. PLoS ONE, 2013, 8, e72632.	1.1	28
40	Glutamate input to noradrenergic neurons plays an essential role in the development of morphine dependence and psychomotor sensitization. International Journal of Neuropsychopharmacology, 2012, 15, 1457-1471.	1.0	9
41	<i>Pten</i> ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB Journal, 2011, 25, 2898-2910.	0.2	106
42	New Striatal Neurons in a Mouse Model of Progressive Striatal Degeneration Are Generated in both the Subventricular Zone and the Striatal Parenchyma. PLoS ONE, 2011, 6, e25088.	1.1	28
43	Nucleolar Disruption in Dopaminergic Neurons Leads to Oxidative Damage and Parkinsonism through Repression of Mammalian Target of Rapamycin Signaling. Journal of Neuroscience, 2011, 31, 453-460.	1.7	136
44	Effects of the cell typeâ€specific ablation of the cAMPâ€responsive transcription factor in noradrenergic neurons on locus coeruleus firing and withdrawal behavior after chronic exposure to morphine. Journal of Neurochemistry, 2010, 115, 563-573.	2.1	20
45	The Gata3 Transcription Factor Is Required for the Survival of Embryonic and Adult Sympathetic Neurons. Journal of Neuroscience, 2010, 30, 10833-10843.	1.7	81
46	The CREB/CREM Transcription Factors Negatively Regulate Early Synaptogenesis and Spontaneous Network Activity. Journal of Neuroscience, 2009, 29, 328-333.	1.7	29
47	Conditional Inactivation of Glucocorticoid Receptor Gene in Dopamine-β-Hydroxylase Cells Impairs Chromaffin Cell Survival. Endocrinology, 2009, 150, 1775-1781.	1.4	33
48	Regulation of neural migration by the CREB/CREM transcription factors and altered Dab1 levels in CREB/CREM mutants. Molecular and Cellular Neurosciences, 2008, 39, 519-528.	1.0	17
49	Glutamate Receptors on Dopamine Neurons Control the Persistence of Cocaine Seeking. Neuron, 2008, 59, 497-508.	3.8	224
50	Depolarization promotes GAD 65â€mediated GABA synthesis by a postâ€translational mechanism in neural stem cellâ€derived neurons. European Journal of Neuroscience, 2008, 27, 269-283.	1.2	10
51	SoxE Proteins Are Differentially Required in Mouse Adrenal Gland Development. Molecular Biology of the Cell, 2008, 19, 1575-1586.	0.9	48
52	Activation of an Endogenous Suicide Response after Perturbation of rRNA Synthesis Leads to Neurodegeneration in Mice. Journal of Neuroscience, 2008, 28, 12759-12764.	1.7	81
53	Specific ablation of the transcription factor CREB in sympathetic neurons surprisingly protects against developmentally regulated apoptosis. Development (Cambridge), 2007, 134, 1663-1670.	1.2	61
54	Analysis of dopamine transporter gene expression patternâ€fâ^'â€fgeneration of DAT-iCre transgenic mice. FEBS Journal, 2007, 274, 3568-3577.	2.2	84

ROSANNA PARLATO

#	Article	IF	CITATIONS
55	Expression of Cre recombinase in dopaminoceptive neurons. BMC Neuroscience, 2007, 8, 4.	0.8	68
56	Target-dependent specification of the neurotransmitter phenotype:cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development (Cambridge), 2006, 133, 141-150.	1.2	110
57	Survival of DA neurons is independent of CREM upregulation in absence of CREB. Genesis, 2006, 44, 454-464.	0.8	47
58	Target-dependent specification of the neurotransmitter phenotype:cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development (Cambridge), 2006, 133, 383-383.	1.2	1
59	cAMP Response Element-Binding Protein Regulates Differentiation and Survival of Newborn Neurons in the Olfactory Bulb. Journal of Neuroscience, 2005, 25, 10105-10118.	1.7	142
60	Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Human Molecular Genetics, 2004, 13, 2595-2606.	1.4	53
61	An integrated regulatory network controlling survival and migration in thyroid organogenesis. Developmental Biology, 2004, 276, 464-475.	0.9	161
62	Nonlinear partial differential equations and applications: Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15462-15467.	3.3	216
63	A Preservation Method That Allows Recovery of Intact RNA from Tissues Dissected by Laser Capture Microdissection. Analytical Biochemistry, 2002, 300, 139-145.	1.1	38
64	Distribution of thetitf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Developmental Dynamics, 2002, 224, 450-456.	0.8	89