
## Robin A Corey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8052736/publications.pdf Version: 2024-02-01



PORIN & COREY

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PyLipID: A Python Package for Analysis of Protein–Lipid Interactions from Molecular Dynamics<br>Simulations. Journal of Chemical Theory and Computation, 2022, 18, 1188-1201.    | 2.3  | 69        |
| 2  | Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us?. Bioscience Reports, 2022, 42, .                                      | 1.1  | 25        |
| 3  | Structure, substrate recognition and initiation of hyaluronan synthase. Nature, 2022, 604, 195-201.                                                                              | 13.7 | 53        |
| 4  | Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. ELife, 2022, 11, .                  | 2.8  | 13        |
| 5  | Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients.<br>Nature Communications, 2022, 13, 2278.                                      | 5.8  | 20        |
| 6  | The guidance and adhesion protein FLRT2 dimerizes in cis via dual small-X3-small transmembrane motifs. Structure, 2022, 30, 1354-1365.e5.                                        | 1.6  | 4         |
| 7  | Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nature Chemical<br>Biology, 2021, 17, 187-195.                                                  | 3.9  | 41        |
| 8  | Jostling for Position: Defining How Multiple Lipid Species Interact with Inward Rectifier Potassium<br>(Kir) Channels. Biophysical Journal, 2021, 120, 1a.                       | 0.2  | 0         |
| 9  | Molecular Simulations of Biogenesis Processes within the Bacterial Cell Envelope. Biophysical<br>Journal, 2021, 120, 49a.                                                        | 0.2  | 0         |
| 10 | Pylipid: A Python Toolkit for Analysis of Lipid-Protein Interactions from MD Simulations. Biophysical<br>Journal, 2021, 120, 48a.                                                | 0.2  | 11        |
| 11 | Assessment and Correction of Small-Angle Scattering Data for Combination with other Experimental Data and with Molecular Simulations. Biophysical Journal, 2021, 120, 264a-265a. | 0.2  | 0         |
| 12 | The Energetics of Cholesterol Transport through Patched1: MD Simulations and Free Energy Calculations. Biophysical Journal, 2021, 120, 72a.                                      | 0.2  | 0         |
| 13 | Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health. Journal of Cell Science, 2021, 134, .                  | 1.2  | 17        |
| 14 | Identification and assessment of cardiolipin interactions with <i>E. coli</i> inner membrane proteins.<br>Science Advances, 2021, 7, .                                           | 4.7  | 49        |
| 15 | Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nature Communications, 2021, 12, 5098.                                                      | 5.8  | 10        |
| 16 | Relative Affinities of Protein–Cholesterol Interactions from Equilibrium Molecular Dynamics<br>Simulations. Journal of Chemical Theory and Computation, 2021, 17, 6548-6558.     | 2.3  | 21        |
| 17 | Identification and Characterization of Specific Protein–Lipid Interactions Using Molecular<br>Simulation. Methods in Molecular Biology, 2021, 2315, 121-139.                     | 0.4  | 2         |
| 18 | Membrane protein biogenesis by the EMC. EMBO Journal, 2021, 40, e107407.                                                                                                         | 3.5  | 10        |

**ROBIN A COREY** 

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nature Communications, 2021, 12, 5892.                                                                                                | 5.8 | 40        |
| 20 | Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances, 2021, 7, eabj5255.                                                                                     | 4.7 | 20        |
| 21 | Lipid Interactions of a Ciliary Membrane TRP Channel: Simulation and Structural Studies of Polycystin-2. Structure, 2020, 28, 169-184.e5.                                                                          | 1.6 | 37        |
| 22 | A Mass‣pectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane<br>Proteins. Angewandte Chemie - International Edition, 2020, 59, 3523-3528.                                      | 7.2 | 33        |
| 23 | A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nature Structural and Molecular Biology, 2020, 27, 78-83.                                                              | 3.6 | 50        |
| 24 | A Mass‣pectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane<br>Proteins. Angewandte Chemie, 2020, 132, 3551-3556.                                                             | 1.6 | 2         |
| 25 | The SERCA residue Glu340 mediates interdomain communication that guides Ca <sup>2+</sup><br>transport. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>31114-31122. | 3.3 | 12        |
| 26 | Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease. Communications Chemistry, 2020, 3, .                                              | 2.0 | 23        |
| 27 | Insights Into Membrane Protein-Lipid Interactions from Free Energy Calculations. Biophysical Journal, 2020, 118, 18a.                                                                                              | 0.2 | 1         |
| 28 | Structural basis of proton-coupled potassium transport in the KUP family. Nature Communications, 2020, 11, 626.                                                                                                    | 5.8 | 60        |
| 29 | Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7803-7813.            | 3.3 | 83        |
| 30 | The energetics of protein–lipid interactions as viewed by molecular simulations. Biochemical Society<br>Transactions, 2020, 48, 25-37.                                                                             | 1.6 | 48        |
| 31 | Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nature Communications, 2019, 10, 4657.                                                            | 5.8 | 23        |
| 32 | The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.                                                                  | 5.8 | 101       |
| 33 | Insights into Membrane Protein–Lipid Interactions from Free Energy Calculations. Journal of<br>Chemical Theory and Computation, 2019, 15, 5727-5736.                                                               | 2.3 | 70        |
| 34 | Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon.<br>Biophysical Journal, 2019, 116, 1931-1940.                                                                      | 0.2 | 22        |
| 35 | A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nature<br>Communications, 2019, 10, 824.                                                                                               | 5.8 | 44        |
| 36 | ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec<br>machinery. ELife, 2019, 8, .                                                                                    | 2.8 | 32        |

**ROBIN A COREY** 

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | HDX-MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA and SecY channels of the bacterial translocon. ELife, 2019, 8, .                                                                    | 2.8 | 20        |
| 38 | Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972. | 3.3 | 65        |
| 39 | Dynamic action of the Sec machinery during initiation, protein translocation and termination. ELife, 2018, 7, .                                                                                                      | 2.8 | 52        |
| 40 | Composition and Activity of the Non-canonical Gram-positive SecY2 Complex. Journal of Biological Chemistry, 2016, 291, 21474-21484.                                                                                  | 1.6 | 10        |
| 41 | Protein translocation: what's the problem?. Biochemical Society Transactions, 2016, 44, 753-759.                                                                                                                     | 1.6 | 14        |
| 42 | Unlocking the Bacterial SecY Translocon. Structure, 2016, 24, 518-527.                                                                                                                                               | 1.6 | 37        |
| 43 | Channel crossing: how are proteins shipped across the bacterial plasma membrane?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150025.                                       | 1.8 | 53        |
| 44 | Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. Advances in Drug and<br>Alcohol Research, 0, 2, .                                                                                              | 2.5 | 8         |