Robin A Corey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8052736/publications.pdf

Version: 2024-02-01

44 1,344 19 32 g-index

68 68 68 1407 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.	12.8	101
2	Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7803-7813.	7.1	83
3	Insights into Membrane Protein–Lipid Interactions from Free Energy Calculations. Journal of Chemical Theory and Computation, 2019, 15, 5727-5736.	5.3	70
4	PyLipID: A Python Package for Analysis of Protein–Lipid Interactions from Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2022, 18, 1188-1201.	5.3	69
5	Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972.	7.1	65
6	Structural basis of proton-coupled potassium transport in the KUP family. Nature Communications, 2020, 11, 626.	12.8	60
7	Channel crossing: how are proteins shipped across the bacterial plasma membrane?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150025.	4.0	53
8	Structure, substrate recognition and initiation of hyaluronan synthase. Nature, 2022, 604, 195-201.	27.8	53
9	Dynamic action of the Sec machinery during initiation, protein translocation and termination. ELife, 2018, 7, .	6.0	52
10	A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nature Structural and Molecular Biology, 2020, 27, 78-83.	8.2	50
11	Identification and assessment of cardiolipin interactions with $\langle i \rangle$ E. coli $\langle i \rangle$ inner membrane proteins. Science Advances, 2021, 7, .	10.3	49
12	The energetics of protein–lipid interactions as viewed by molecular simulations. Biochemical Society Transactions, 2020, 48, 25-37.	3.4	48
13	A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nature Communications, 2019, 10, 824.	12.8	44
14	Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nature Chemical Biology, 2021, 17, 187-195.	8.0	41
15	Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nature Communications, 2021, 12, 5892.	12.8	40
16	Unlocking the Bacterial SecY Translocon. Structure, 2016, 24, 518-527.	3.3	37
17	Lipid Interactions of a Ciliary Membrane TRP Channel: Simulation and Structural Studies of Polycystin-2. Structure, 2020, 28, 169-184.e5.	3.3	37
18	A Massâ€Spectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie - International Edition, 2020, 59, 3523-3528.	13.8	33

#	Article	IF	Citations
19	ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery. ELife, $2019, 8, .$	6.0	32
20	Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us?. Bioscience Reports, 2022, 42, .	2.4	25
21	Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer. Nature Communications, 2019, 10, 4657.	12.8	23
22	Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease. Communications Chemistry, 2020, 3, .	4.5	23
23	Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon. Biophysical Journal, 2019, 116, 1931-1940.	0.5	22
24	Relative Affinities of Proteinâ€"Cholesterol Interactions from Equilibrium Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2021, 17, 6548-6558.	5.3	21
25	HDX-MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA and SecY channels of the bacterial translocon. ELife, 2019, 8, .	6.0	20
26	Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances, 2021, 7, eabj5255.	10.3	20
27	Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients. Nature Communications, 2022, 13, 2278.	12.8	20
28	Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health. Journal of Cell Science, 2021, 134, .	2.0	17
29	Protein translocation: what's the problem?. Biochemical Society Transactions, 2016, 44, 753-759.	3.4	14
30	Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. ELife, 2022, 11 , .	6.0	13
31	The SERCA residue Glu340 mediates interdomain communication that guides Ca ²⁺ transport. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31114-31122.	7.1	12
32	Pylipid: A Python Toolkit for Analysis of Lipid-Protein Interactions from MD Simulations. Biophysical Journal, 2021, 120, 48a.	0.5	11
33	Composition and Activity of the Non-canonical Gram-positive SecY2 Complex. Journal of Biological Chemistry, 2016, 291, 21474-21484.	3.4	10
34	Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nature Communications, 2021, 12, 5098.	12.8	10
35	Membrane protein biogenesis by the EMC. EMBO Journal, 2021, 40, e107407.	7.8	10
36	Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. Advances in Drug and Alcohol Research, $0, 2, .$	2.5	8

#	Article	IF	CITATIONS
37	The guidance and adhesion protein FLRT2 dimerizes in cis via dual small-X3-small transmembrane motifs. Structure, 2022, 30, 1354-1365.e5.	3.3	4
38	A Massâ€Spectrometryâ€Based Approach to Distinguish Annular and Specific Lipid Binding to Membrane Proteins. Angewandte Chemie, 2020, 132, 3551-3556.	2.0	2
39	Identification and Characterization of Specific Protein–Lipid Interactions Using Molecular Simulation. Methods in Molecular Biology, 2021, 2315, 121-139.	0.9	2
40	Insights Into Membrane Protein-Lipid Interactions from Free Energy Calculations. Biophysical Journal, 2020, 118, 18a.	0.5	1
41	Jostling for Position: Defining How Multiple Lipid Species Interact with Inward Rectifier Potassium (Kir) Channels. Biophysical Journal, 2021, 120, 1a.	0.5	0
42	Molecular Simulations of Biogenesis Processes within the Bacterial Cell Envelope. Biophysical Journal, 2021, 120, 49a.	0.5	0
43	Assessment and Correction of Small-Angle Scattering Data for Combination with other Experimental Data and with Molecular Simulations. Biophysical Journal, 2021, 120, 264a-265a.	0.5	0
44	The Energetics of Cholesterol Transport through Patched1: MD Simulations and Free Energy Calculations. Biophysical Journal, 2021, 120, 72a.	0.5	0