Jian Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/805243/publications.pdf

Version: 2024-02-01

933447 794594 19 445 10 19 citations h-index g-index papers 19 19 19 529 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theoretical and Applied Genetics, 2016, 129, 305-316.	3.6	77
2	Loss-of-Function Mutations in CsMLO1 Confer Durable Powdery Mildew Resistance in Cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2015, 6, 1155.	3.6	65
3	phyB Interacts with BES1 to Regulate Brassinosteroid Signaling in Arabidopsis. Plant and Cell Physiology, 2019, 60, 353-366.	3.1	49
4	Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein \hat{I}^2 Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis. Molecular Plant, 2018, 11, 1248-1263.	8.3	46
5	Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus. Theoretical and Applied Genetics, 2018, 131, 1-12.	3.6	38
6	Differential Gene Expression Caused by the F and M Loci Provides Insight Into Ethylene-Mediated Female Flower Differentiation in Cucumber. Frontiers in Plant Science, 2018, 9, 1091.	3.6	30
7	Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. Plant Science, 2020, 298, 110578.	3.6	20
8	Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family under Abiotic Stresses in Cucumber (Cucumis sativus L.). Genes, 2020, 11, 171.	2.4	20
9	The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. Journal of Experimental Botany, 2020, 71, 6297-6310.	4.8	18
10	Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. Horticulture Research, 2021, 8, 21.	6.3	15
11	CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics, 2021, 134, 2141-2150.	3.6	11
12	A positive feedback loop mediated by <i>CsERF31</i> initiates female cucumber flower development. Plant Physiology, 2021, 186, 1088-1100.	4.8	11
13	A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC Plant Biology, 2021, 21, 182.	3.6	11
14	Cucumber CsTRY Negatively Regulates Anthocyanin Biosynthesis and Trichome Formation When Expressed in Tobacco. Frontiers in Plant Science, 2019, 10, 1232.	3.6	8
15	Cathepsin B-like cysteine protease ApCathB negatively regulates cryo-injury tolerance in transgenic Arabidopsis and Agapanthus praecox. Plant Science, 2021, 308, 110928.	3.6	8
16	Deep learning-based prediction of TFBSs in plants. Trends in Plant Science, 2021, 26, 1301-1302.	8.8	7
17	<scp>TERMINAL FLOWER</scp> 1 and <scp>TERMINAL FLOWER</scp> 1d respond to temperature and photoperiod signals to inhibit determinate growth in cucumber. Plant, Cell and Environment, 2021, 44, 2580-2592.	5.7	5
18	Interactions between Diffuse Light and Cucumber (Cucumis sativus L.) Canopy Structure, Simulations of Light Interception in Virtual Canopies. Agronomy, 2022, 12, 602.	3.0	5

#	Article	IF	CITATIONS
19	A cucumber NAM domain transcription factor promotes pistil development in Arabidopsis. Molecular Horticulture, 2021, $1,\ldots$	5.8	1