Boris D Barmashenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the beam quality of DPALs by refractive index gradients induced by the pump beam in the heated gain medium: experimental verification of the theoretical prediction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 550.	2.1	3
2	Modeling of K and Rb DPALs. , 2021, , .		0
3	3D CFD modeling of flowing-gas Rb DPALs: effects of buffer gas composition and of ionization of high lying Rb states. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3523.	2.1	6
4	Implications of thermal lensing and four-wave mixing on stimulated Raman scattering in an aqueous solution of sodium nitrate. Optics and Laser Technology, 2020, 127, 106169.	4.6	6
5	Controlling the beam quality in DPALs by changing the resonator parameters. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	4
6	Velocity dependence of the performance of flowing-gas K DPAL with He and He/CH ₄ buffer gases: 3D CFD modeling and comparison with experimental results. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2209.	2.1	8
7	Dependence of Cs atoms density and laser power on gas velocity in Cs DPAL. Optics and Laser Technology, 2019, 116, 18-21.	4.6	5
8	Dependence of static K DPAL performance on addition of methane to He buffer gas: 3D CFD modeling and comparison with experimental results. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3464.	2.1	10
9	Parametric study of the performance and beam quality of cesium DPAL: experiment and modelling. , 2019, , .		0
10	Measuring and modelling the beam quality in cesium DPALs. , 2019, , .		0
11	Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies. Optics Express, 2018, 26, 17814.	3.4	13
12	Beam propagation in an inhomogeneous medium of a static gas cesium diode pumped alkali laser: three-dimensional wave optics and fluid dynamics simulation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 558.	2.1	13
13	General model of DPAL output power and beam quality dependence on pump beam parameters: experimental and theoretical studies. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 3134.	2.1	7
14	Parametric study of static and flowing-gas Cs DPAL. , 2018, , .		0
15	3D CFD modeling of flowing-gas DPALs with different pumping geometries and various flow velocities. Proceedings of SPIE, 2017, , .	0.8	1
16	Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization. Proceedings of SPIE, 2017, , .	0.8	0
17	Modeling of Flowing-Gas Diode-Pumped Potassium Laser With Different Pumping Geometries: Scaling Up and Controlling Beam Quality. IEEE Journal of Quantum Electronics, 2017, 53, 1-7.	1.9	5
18	Multi-transverse mode operation of alkali vapor lasers: modeling and comparison with experiments. Optics Express, 2017, 25, 19767.	3.4	10

#	Article	IF	CITATIONS
19	Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 279.	2.1	17
20	Experimental studies and modeling of static Cs DPALs: dependence of the power and beam shape on different parameters. , 2017, , .		0
21	Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models. , 2017, , .		0
22	Modeling of multi-transversal mode lasing in static alkali vapor lasers. , 2017, , .		0
23	Scaling up and controlling beam quality of flowing-gas diode pumped potassium laser with different pumping geometries: 3D CFD modeling. , 2017, , .		0
24	Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser. Optics Express, 2016, 24, 14374.	3.4	9
25	Experimental and theoretical study of the performance of optically pumped cesium vapor laser as a function of the pump-to-laser beam overlap. Proceedings of SPIE, 2016, , .	0.8	0
26	Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices. Optics Express, 2016, 24, 5469.	3.4	10
27	Modeling of static and flowing-gas diode pumped alkali lasers. , 2016, , .		1
28	Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results. Optics Express, 2015, 23, 20986.	3.4	18
29	Modeling of pulsed K DPAL taking into account the spatial variation of the pump and laser intensities in the transverse direction. , 2015, , .		0
30	Semi-analytical and CFD model calculations of subsonic flowing-gas DPALs and their comparison to experimental results. Proceedings of SPIE, 2015, , .	0.8	0
31	Modeling of supersonic diode pumped alkali lasers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1824.	2.1	20
32	Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling. Proceedings of SPIE, 2015, , .	0.8	1
33	CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs. Proceedings of SPIE, 2015, , .	0.8	10
34	3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries. Proceedings of SPIE, 2015, , .	0.8	0
35	Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation. Proceedings of SPIE, 2014, , .	0.8	7
36	Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling. , 2014, , .		12

Boris D Barmashenko

#	Article	IF	CITATIONS
37	Comparison of semi-analytical to CFD model calculations and to experimental results of subsonic flowing-gas and static DPALs. , 2014, , .		0
38	Theoretical studies of the feasibility of supersonic DPALs. Proceedings of SPIE, 2014, , .	0.8	1
39	CFD DPAL modeling for various schemes of flow configurations. Proceedings of SPIE, 2014, , .	0.8	11
40	Structure, dynamics, and light localization in self-induced plasma photonic lattices. Physical Review A, 2014, 89, .	2.5	0
41	Enhanced stimulated Raman scattering in temperature controlled liquid water. Applied Physics Letters, 2014, 105, 061107.	3.3	41
42	Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2628.	2.1	50
43	Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions. Optics Communications, 2013, 292, 123-125.	2.1	42
44	Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1118.	2.1	100
45	Feasibility of supersonic diode pumped alkali lasers: Model calculations. Applied Physics Letters, 2013, 102, 141108.	3.3	37
46	Computational modeling of laser-plasma interactions: Pulse self-modulation and energy transfer between intersecting laser pulses. Physical Review E, 2013, 88, 013307.	2.1	4
47	Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers. , 2013, , .		5
48	Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas. Optics Letters, 2012, 37, 3615.	3.3	44
49	The I2dissociation mechanisms in the chemical oxygen-iodine laser revisited. Journal of Chemical Physics, 2012, 136, 244307.	3.0	3
50	Modeling of static and flowing-gas diode pumped alkali lasers. Proceedings of SPIE, 2012, , .	0.8	2
51	Comparison of one- and three-dimensional computational fluid dynamics models of the supersonic chemical oxygen–iodine laser. Applied Physics B: Lasers and Optics, 2012, 108, 615-621.	2.2	6
52	I2 Dissociation Mechanisms In the Chemical Oxygen-Iodine Laser Revisited Using Three- And One- Dimensional Computational Fluid Dynamics Modeling. , 2012, , .		0
53	<title>Lasing in supersonic chemical oxygen-iodine lasers: recent modeling and comparison with experiment</title> . , 2010, ,		0
54	<title>A historical overview on the mechanism of the COIL kinetics</title> . Proceedings of SPIE. 2010	0.8	0

#	Article	IF	CITATIONS
55	Modeling of the Gain and the Power in Chemical Oxygen-Iodine Lasers. , 2010, , .		0
56	Analysis of lasing in chemical oxygen-iodine lasers with unstable resonators using a geometric-optics model. Applied Optics, 2009, 48, 2542.	2.1	2
57	A computational fluid dynamics simulation of a high pressure ejector COIL and comparison to experiments. , 2008, , .		0
58	Analysis of lasing in COILs with positive and negative branch unstable resonators using a simple geometrical-optics model. Proceedings of SPIE, 2008, , .	0.8	1
59	Power enhancement in chemical oxygen-iodine lasers by iodine predissociation via corona/glow discharge. Applied Physics Letters, 2007, 90, 161122.	3.3	21
60	Recent studies of Ben-Gurion Univ. high efficiency supersonic chemical oxygen-iodine laser. , 2005, , .		1
61	Diagnostic Studies of Ben-Gurion University High Efficiency Supersonic COIL. , 2005, , .		1
62	Nearly attaining the theoretical efficiency of supersonic chemical oxygen-iodine lasers. Applied Physics Letters, 2004, 85, 5851-5853.	3.3	25
63	Parametric study of the Ben-Gurion University efficient chemical oxygen-iodine laser. , 2004, , .		4
64	A 33% efficient chemical oxygen–iodine laser with supersonic mixing of iodine and oxygen. Applied Physics Letters, 2003, 82, 3838-3840.	3.3	13
65	Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine. , 2002, 4631, 23.		4
66	One-dimensional modeling of the gain and temperature in a supersonic chemical oxygen-iodine laser with transonic injection of iodine. IEEE Journal of Quantum Electronics, 2002, 38, 345-352.	1.9	9
67	Spatial distribution of the gain and temperature across the flow in a slit-nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic schemes of iodine injection. IEEE Journal of Quantum Electronics, 2002, 38, 1398-1405.	1.9	12
68	Modeling of the gain, temperature, and iodine dissociation fraction in a supersonic chemical oxygen-iodine laser. , 2002, , .		1
69	Parametric study of small-signal gain in a slit nozzle, supersonic chemical oxygen-iodine laser operating without primary buffer gas. IEEE Journal of Quantum Electronics, 2001, 37, 174-182.	1.9	16
70	lodine dissociation in supersonic COILs with different schemes of iodine mixing. , 2001, , .		0
71	Supersonic COIL with iodine injection in transonic and supersonic sections of the nozzle. , 2001, , .		2
72	<title>Current status of chemical oxygen-iodine laser research</title> ., 2001, , .		0

#	Article	IF	CITATIONS
73	Small-signal gain and iodine dissociation in a supersonic chemical oxygen–iodine laser with transonic injection of iodine. Applied Physics Letters, 1999, 74, 3093-3095.	3.3	7
74	Diode-laser-based absorption spectroscopy diagnostics of a jet-type O/sub 2/(/sup 1/î") generator for chemical oxygen-iodine lasers. IEEE Journal of Quantum Electronics, 1999, 35, 540-547.	1.9	21
75	Parametric study of an efficient supersonic chemical oxygen-iodine laser/jet generator system operating without buffer gas. IEEE Journal of Quantum Electronics, 1998, 34, 1068-1074.	1.9	15
76	Analysis of lasing in gas-flow lasers with stable resonators. Applied Optics, 1998, 37, 5697.	2.1	15
77	Parametric studies of a small-scale chemical oxygen-iodine laser/jet generator system: recent achievements. , 1998, 3268, 146.		Ο
78	Chemical oxygen-iodine laser investigations in Israel. , 1998, 3574, 273.		0
79	An efficient supersonic chemical oxygen–iodine laser operating without buffer gas and with simple nozzle geometry. Applied Physics Letters, 1997, 70, 2341-2343.	3.3	20
80	Experimental study of a small scale COIL using a jet type generator of singlet oxygen. , 1997, 3092, 690.		0
81	Analysis of lasing in COILs with wide aperture of the mirrors in the resonator. , 1997, , .		Ο
82	Power dependence of chemical oxygen-iodine lasers on iodine dissociation. AIAA Journal, 1996, 34, 2569-2574.	2.6	22
83	Power optimization of small-scale chemical oxygen-iodine laser with jet-type singlet oxygen generator. IEEE Journal of Quantum Electronics, 1996, 32, 2051-2057.	1.9	16
84	Experiment and modeling of a small-scale, supersonic chemical oxygen-iodine laser. Applied Physics B: Lasers and Optics, 1995, 61, 37-47.	2.2	21
85	Optical extraction efficiency in gas-flow lasers. Optics Letters, 1995, 20, 1480.	3.3	1
86	Parametric study of the gain in a small scale, grid nozzle, supersonic chemical oxygen-iodine laser. IEEE Journal of Quantum Electronics, 1995, 31, 903-909.	1.9	12
87	Modeling of mixing in chemical oxygenâ€iodine lasers: Analytic and numerical solutions and comparison with experiments. Journal of Applied Physics, 1994, 75, 7653-7665.	2.5	34
88	Theoretical modeling of chemical generators producing O2(1Δ) at high pressure for chemically pumped iodine lasers. Journal of Applied Physics, 1993, 73, 1598-1611.	2.5	14
89	<title>Modeling of high-pressure O2(1^) generators for chemical oxygen-iodine lasers</title> . , 1993, , .		0
90	Dynamics of the detonation products of lead azide: III. Laserâ€induced hole burning and flow visualization. Journal of Applied Physics, 1993, 74, 45-52.	2.5	3

#	Article	IF	CITATIONS
91	The sudden expansion of a gas cloud into vacuum revisited. Physics of Fluids A, Fluid Dynamics, 1993, 5, 3265-3272.	1.6	9
92	<title>Effect of mixing on iodine dissociation, population inversion and lasing in chemical oxygen-iodine lasers</title> . , 1993, , .		0