Xue-min Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051788/publications.pdf

Version: 2024-02-01

87723 128067 4,363 112 38 60 citations h-index g-index papers 113 113 113 3039 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A low-cost photo-evaporation inorganic membrane preparation and treatment of the simulated high salinity radioactive waste water. Journal of Hazardous Materials, 2022, 424, 127433.	6.5	16
2	Self-assembled geopolymer-based microspheres supported nanoclusters for CO2 hydrogenation. Journal of CO2 Utilization, 2022, 55, 101820.	3.3	6
3	Highly efficient Cd(II) removal using macromolecular dithiocarbamate/slag-based geopolymer composite microspheres (SGM-MDTC). Separation and Purification Technology, 2022, 286, 120395.	3.9	13
4	Slag-based geopolymer microsphere-supported Cu: a low-cost and sustainable catalyst for CO ₂ hydrogenation. Sustainable Energy and Fuels, 2022, 6, 1436-1447.	2.5	6
5	A review on the porous geopolymer preparation for structural and functional materials applications. International Journal of Applied Ceramic Technology, 2022, 19, 1793-1813.	1.1	23
6	Potassium methyl silicate (CH5SiO3Na) assisted activation and modification of alkali-activated-slag-based drying powder coating for protecting cement concrete. Construction and Building Materials, 2022, 326, 126858.	3.2	9
7	Slag-based geopolymer microspheres as a support for CO2 methanation. Fuel, 2022, 319, 123627.	3.4	12
8	A high-efficiency geopolymer-based 3D photoevaporation membrane enhances evaporation by using low temperature waste heat. Materials Today Energy, 2022, , 101016.	2.5	3
9	Thermal Catalytic-Cracking Low-Density Polyethylene Waste by Metakaolin-Based Geopolymer NaA Microsphere. Molecules, 2022, 27, 2557.	1.7	4
10	Enhance the removal and immobilization of Cd(II) by the synthesis in situ of dithiocarbamate-geopolymer microsphere composite. Journal of Colloid and Interface Science, 2022, 622, 562-576.	5.0	8
11	A Superhydrophobic Alkali Activated Materials Coating by Facile Preparation. Coatings, 2022, 12, 864.	1.2	3
12	Synthesis of NaA-zeolite microspheres by conversion of geopolymer and their performance of Pb (II) removal. Applied Clay Science, 2021, 200, 105914.	2.6	33
13	Novel procedure of CO ₂ capture of the CaO sorbent activator on the reaction of one-part alkali-activated slag. RSC Advances, 2021, 11, 12476-12483.	1.7	11
14	Preparation, characterization and application of geopolymer-based tubular inorganic membrane. Applied Clay Science, 2021, 203, 106001.	2.6	25
15	A Facile Method for Preparing Superhydrophobic and Flameâ€Retardant Fabrics Materials. Advanced Engineering Materials, 2021, 23, 2100502.	1.6	6
16	Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture. Journal of Cleaner Production, 2021, 316, 128163.	4.6	17
17	Effects of modifying agent on rheology and workability of alkali-activated slag paste for 3D extrusion forming. Construction and Building Materials, 2021, 302, 124062.	3.2	11
18	A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties. Applied Surface Science, 2021, 562, 150192.	3.1	36

#	Article	IF	CITATIONS
19	Effect of slag on the improvement of setting time and compressive strength of low reactive volcanic ash geopolymers synthetized at room temperature. Materials Chemistry and Physics, 2020, 239, 122077.	2.0	44
20	Prepared self-growing supported nickel catalyst by recovering Ni (â¡) from metal wastewater using geopolymer microspheres. Journal of Hazardous Materials, 2020, 389, 121919.	6.5	47
21	KOH-Activated Geopolymer Microspheres Recycle Co(II) with Higher Adsorption Capacity than NaOH-Activated Ones. ACS Omega, 2020, 5, 23898-23908.	1.6	16
22	Exothermic behavior and drying shrinkage of alkali-activated slag concrete by low temperature-preparation method. Construction and Building Materials, 2020, 262, 120056.	3.2	21
23	Prepared self-growth supported copper catalyst by recovering Cu (II) from wastewater using geopolymer microspheres. Journal of Cleaner Production, 2020, 272, 122571.	4.6	25
24	Expansion behavior and microstructure change of alkali-activated slag grouting material in carbonate environment. Construction and Building Materials, 2020, 262, 120593.	3.2	16
25	In-situ synchronous carbonation and self-activation of biochar/geopolymer composite membrane: Enhanced catalyst for oxidative degradation of tetracycline in water. Chemical Engineering Journal, 2020, 397, 125528.	6.6	54
26	Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega, 2020, 5, 14822-14830.	1.6	16
27	One-Part Plastic Formable Inorganic Coating Obtain from Alkali-Activated Slag /Starch(CMS) Hybrid Composites. Molecules, 2020, 25, 844.	1.7	4
28	Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Construction and Building Materials, 2020, 260, 119909.	3.2	18
29	A Low-Cost Biomimetic Heterostructured Multilayer Membrane with Geopolymer Microparticles for Broad-Spectrum Water Purification. ACS Applied Materials & Interfaces, 2020, 12, 12133-12142.	4.0	44
30	Preparation of geopolymer-based porous filter using the quartz sand compact method. Journal of Porous Materials, 2020, 27, 863-874.	1.3	6
31	3D extrusion free forming of geopolymer composites: Materials modification and processing optimization. Journal of Cleaner Production, 2020, 258, 120986.	4.6	56
32	Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials. Cement and Concrete Composites, 2019, 104, 103381.	4.6	56
33	Synthesis of Fe2O3-modified porous geopolymer microspheres for highly selective adsorption and solidification of Fâ ⁻ from waste-water. Composites Part B: Engineering, 2019, 178, 107497.	5.9	43
34	A porous gradient geopolymer-based tube membrane with high PM removal rate for air pollution. Journal of Cleaner Production, 2019, 217, 335-343.	4.6	44
35	Superhydrophobic Coatings Prepared by the in Situ Growth of Silicone Nanofilaments on Alkali-Activated Geopolymers Surface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22809-22816.	4.0	38
36	A green drying powder inorganic coating based on geopolymer technology. Construction and Building Materials, 2019, 214, 441-448.	3.2	30

#	Article	IF	CITATIONS
37	Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water. Cement and Concrete Composites, 2019, 99, 140-150.	4.6	42
38	Functionalized Porous Silica-Based Nano/Micro Particles for Environmental Remediation of Hazard lons. Nanomaterials, 2019, 9, 247.	1.9	28
39	Facile fabrication of inorganic polymer microspheres as adsorbents for removing heavy metal ions. Materials Research Bulletin, 2019, 113, 202-208.	2.7	17
40	â€~Useful' template synthesis of N-doped acicular hollow porous carbon/carbon-nanotubes for enhanced capture and selectivity of CO2. Chemical Engineering Journal, 2019, 361, 278-285.	6.6	42
41	Preparation of geopolymer inorganic membrane and purification of pulp-papermaking green liquor. Applied Clay Science, 2019, 168, 269-275.	2.6	37
42	One-Pot Preparation of NaA Zeolite Microspheres for Highly Selective and Continuous Removal of Sr(II) from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2019, 7, 2459-2470.	3.2	60
43	Effect of limestone on rheological, shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials. Construction and Building Materials, 2018, 191, 1285-1292.	3.2	70
44	Preparation and characterization of geopolymers based on a phosphoric-acid-activated electrolytic manganese dioxide residue. Journal of Cleaner Production, 2018, 205, 488-498.	4.6	43
45	Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+from wastewater. Journal of Cleaner Production, 2018, 193, 351-362.	4.6	88
46	Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 2018, 137, 177-190.	5.3	103
47	Preparation of paraffin-based phase-change microcapsules and application in geopolymer coating. Journal of Coatings Technology Research, 2018, 15, 867-874.	1.2	19
48	Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technology, 2017, 312, 204-209.	2.1	58
49	N-Doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and â€~useful' template of CaCO ₃ for VOC fast adsorption and small peptide enrichment. Chemical Communications, 2017, 53, 3442-3445.	2.2	42
50	Study on the preparation of a free-sintered inorganic polymer-based proppant using the suspensions solidification method. Journal of Cleaner Production, 2017, 148, 276-282.	4.6	26
51	Low temperature depolymerization and polycondensation of a slag-based inorganic polymer. Ceramics International, 2017, 43, 9067-9076.	2.3	37
52	Synthesis and characterization of low temperature (<800 \hat{A}° C) ceramics from red mud geopolymer precursor. Construction and Building Materials, 2017, 131, 564-573.	3.2	70
53	Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Research, 2017, 44, 1-6.	3.0	55
54	Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Construction and Building Materials, 2017, 156, 486-495.	3.2	73

#	Article	IF	Citations
55	Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Applied Clay Science, 2017, 148, 109-117.	2.6	36
56	Preparation of NaA zeolite spheres from geopolymer gels using a oneâ€step method in silicone oil. International Journal of Applied Ceramic Technology, 2017, 14, 982-986.	1.1	16
57	Effect of vacuum dehydration on gel structure and properties of metakaolin-based geopolymers. Ceramics International, 2017, 43, 14340-14346.	2.3	26
58	Facile synthesis of hierarchical N-doped hollow porous carbon whiskers with ultrahigh surface area ⟨i⟩via⟨ i⟩ synergistic inner–outer activation for casein hydrolysate adsorption. Journal of Materials Chemistry B, 2017, 5, 9211-9218.	2.9	13
59	Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: Batch and column studies. Chemical Engineering Journal, 2017, 311, 126-134.	6.6	140
60	Preparation of a non-hydrothermal NaA zeolite membrane and defect elimination by vacuum-inhalation repair method. Chemical Engineering Science, 2017, 158, 117-123.	1.9	30
61	Recent developments on inorganic polymers synthesis and applications. Ceramics International, 2016, 42, 15142-15159.	2.3	119
62	Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction. Scientific Reports, 2016, 6, 29659.	1.6	30
63	Study on synthesis and characterization of ZSM-20 zeolites from metakaolin-based geopolymers. Applied Clay Science, 2016, 129, 102-107.	2.6	37
64	Characterization of chemosynthetic H3PO4–Al2O3–2SiO2 geopolymers. Ceramics International, 2016, 42, 10908-10912.	2.3	47
65	Study of the preparation of CdS on the surface of geopolymer spheres and photocatalyst performance. Materials Chemistry and Physics, 2016, 178, 204-210.	2.0	36
66	Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid. Ceramics International, 2016, 42, 9287-9291.	2.3	40
67	Preparation of LTCC materials with adjustable permittivity based on BaO–B2O3–SiO2/BaTiO3 system. Materials Research Bulletin, 2015, 65, 249-252.	2.7	20
68	Synthesis of rambutan-like MnCo2O4 and its adsorption performance for methyl orange. Journal of Thermal Analysis and Calorimetry, 2015, 122, 653-663.	2.0	7
69	Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Applied Clay Science, 2015, 114, 586-592.	2.6	68
70	Alkali-activation reactivity of chemosynthetic Al2O3–2SiO2 powders and their 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectra. Particuology, 2015, 22, 151-156.	2.0	11
71	Preparation and characterization of a self-supporting inorganic membrane based on metakaolin-based geopolymers. Applied Clay Science, 2015, 115, 254-259.	2.6	39
72	Preparation of porous P-type zeolite spheres with suspension solidification method. Materials Letters, 2015, 161, 558-560.	1.3	39

#	Article	IF	CITATIONS
73	Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. Journal of Hazardous Materials, 2015, 299, 711-718.	6.5	137
74	Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent. Materials and Design, 2015, 88, 1244-1249.	3.3	81
75	Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy and Buildings, 2015, 87, 220-225.	3.1	88
76	Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: Synthesis and evaluation. Journal of Hazardous Materials, 2015, 283, 244-251.	6.5	193
77	Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. Journal of Materials Chemistry A, 2014, 2, 2136-2145.	5.2	128
78	Preparation of large-sized analcime single crystals using the Geopolymer-Gels-Conversion (GGC) method. Materials Letters, 2014, 135, 15-18.	1.3	19
79	Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 2014, 99, 144-148.	2.6	238
80	Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture. Materials Letters, 2014, 116, 167-170.	1.3	87
81	Hot-pressure forming process of PVC/geopolymer composite materials. Applied Clay Science, 2013, 71, 32-36.	2.6	10
82	Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. Journal of Thermal Analysis and Calorimetry, 2013, 111, 9-16.	2.0	26
83	Reprint of Hot-pressure forming process of PVC/geopolymer composite materials. Applied Clay Science, 2013, 73, 51-55.	2.6	3
84	Preparation of self-supporting NaA zeolite membranes using geopolymers. Journal of Membrane Science, 2013, 447, 66-72.	4.1	94
85	Influence of synthesis parameters on NaA zeolite crystals. Powder Technology, 2013, 243, 184-193.	2.1	87
86	Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O. Journal of Thermal Analysis and Calorimetry, 2012, 110, 781-787.	2.0	23
87	Preparation of nano-sized Al2O3–2SiO2 powder by sol–gel plus azeotropic distillation method. Particuology, 2012, 10, 42-45.	2.0	8
88	Selective self-assembly synthesis of MnV2O6 \hat{A} ·4H2O with controlled morphologies and study on its thermal decomposition. Journal of Thermal Analysis and Calorimetry, 2012, 109, 163-169.	2.0	16
89	Al2O3-2SiO2 Nanoparticles with Defined Al-Si Ratio: Processing Optimization and Conversion. Chinese Journal of Chemical Engineering, 2012, 20, 312-318.	1.7	2
90	The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. Materials Letters, 2012, 66, 10-12.	1.3	86

#	Article	IF	Citations
91	Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization. Journal of Thermal Analysis and Calorimetry, 2012, 107, 625-632.	2.0	24
92	A novel aluminosilicate geopolymer material with low dielectric loss. Materials Chemistry and Physics, 2011, 130, 1-4.	2.0	97
93	Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. Journal of Thermal Analysis and Calorimetry, 2011, 103, 805-812.	2.0	21
94	Different microstructure BaO–B2O3–SiO2 glass/ceramic composites depending on high-temperature wetting affinity. Ceramics International, 2010, 36, 1473-1478.	2.3	17
95	A novel chemosynthetic method for the production of nitrate sodalite. Materials Letters, 2010, 64, 2667-2669.	1.3	9
96	Characterization of chemosynthetic Al2O3–2SiO2 geopolymers. Journal of Non-Crystalline Solids, 2010, 356, 72-76.	1.5	50
97	Preparation of geopolymer precursors by sol–gel method and their characterization. Journal of Materials Science, 2009, 44, 3991-3996.	1.7	42
98	Microwave dielectric properties of a new A6B5O18-type cation deficient perovskites: Sr5LaTi2Nb3O18. Journal of Materials Science: Materials in Electronics, 2009, 20, 741-744.	1.1	8
99	Interfacial investigation of the Co-fired NiCuZn Ferrite/PMN composite prepared by tape casting. Journal of Electroceramics, 2008, 21, 536-540.	0.8	2
100	The co-fired behaviors between Ag and glass–ceramics materials in LTCC. Journal of Electroceramics, 2008, 21, 541-544.	0.8	6
101	Synthesis and dielectric properties of Ba2TiSi2O8 glass-ceramics from the sol–gel process. Journal of Electroceramics, 2008, 21, 565-568.	0.8	5
102	A study on electrical conductivity of chemosynthetic Al2O3–2SiO2 geoploymer materials. Journal of Power Sources, 2008, 184, 652-656.	4.0	97
103	A simple and an effective method for the fabrication of densified glass-ceramics of low temperature co-fired ceramics. Materials Research Bulletin, 2008, 43, 1590-1597.	2.7	19
104	Microwave dielectric properties of Ba2â^'Sr La3Ti3NbO15 ceramics. Materials Letters, 2008, 62, 4121-4123.	1.3	10
105	Co-Firing Behavior and Interfacial Structure of BaO–TiO2–B2O3–SiO2Glass–Ceramics/NiCuZn Ferrite Composites. Materials and Manufacturing Processes, 2007, 22, 251-255.	2.7	19
106	Selective Oxidation Synthesis of MnCr ₂ O ₄ Spinel Nanowires from Commercial Stainless Steel Foil. Crystal Growth and Design, 2007, 7, 2279-2281.	1.4	39
107	The influence of free water content on dielectric properties of alkali active slag cement paste. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 774-777.	0.4	6
108	Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 1-5.	1.7	23

#	Article	IF	CITATIONS
109	Styrene-acrylic latex binder for room temperature lamination of ceramics green tapes. Journal of Materials Science, 2005, 40, 1835-1837.	1.7	4
110	A study on green tapes for LOM with water-based tape casting processing. Materials Letters, 2003, 57, 1300-1304.	1.3	40
111	Sintering technology research of Fe3Al/Al2O3 ceramic composites. Journal of Materials Processing Technology, 2001, 113, 482-485.	3.1	8
112	Fabrication of geopolymer microspheres and their Pb(II) adsorption performance by fixed-bed column method., 0, 207, 300-308.		1