
Yunhua Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051563/publications.pdf Version: 2024-02-01

ΥΠΝΗΠΑ ΧΠ

#	Article	IF	CITATIONS
1	Expanded graphite as superior anode for sodium-ion batteries. Nature Communications, 2014, 5, 4033.	5.8	1,472
2	Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Letters, 2011, 11, 4288-4294.	4.5	1,210
3	Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodiumâ€ion and Lithiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 128-133.	10.2	773
4	Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode. ACS Nano, 2013, 7, 6378-6386.	7.3	610
5	Electrochemical Intercalation of Potassium into Graphite. Advanced Functional Materials, 2016, 26, 8103-8110.	7.8	545
6	Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 470-474.	4.5	531
7	Comparison of electrochemical performances of olivine NaFePO ₄ in sodium-ion batteries and olivine LiFePO ₄ in lithium-ion batteries. Nanoscale, 2013, 5, 780-787.	2.8	420
8	Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity. ACS Nano, 2013, 7, 8003-8010.	7.3	393
9	Confined Sulfur in Microporous Carbon Renders Superior Cycling Stability in Li/S Batteries. Advanced Functional Materials, 2015, 25, 4312-4320.	7.8	279
10	In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers. Nano Letters, 2014, 14, 3445-3452.	4.5	263
11	3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Liâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1400753.	10.2	247
12	A Polysulfideâ€Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1804581.	11.1	246
13	Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.	18.7	233
14	Nitrogenâ€Đoped Carbon Nanotubes Derived from Metal–Organic Frameworks for Potassiumâ€ion Battery Anodes. ChemSusChem, 2018, 11, 202-208.	3.6	214
15	Elucidation of the Sodiumâ€Storage Mechanism in Hard Carbons. Advanced Energy Materials, 2018, 8, 1703217.	10.2	212
16	Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and Highâ€Rate Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1904771.	11.1	201
17	High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 19237-19244.	5.2	195
18	Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassiumâ€ion Battery Anodes. Small, 2018, 14, e1802140.	5.2	194

#	Article	IF	CITATIONS
19	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie - International Edition, 2020, 59, 5273-5277.	7.2	189
20	Recent research progress in non-aqueous potassium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 26495-26506.	1.3	188
21	Electrolytes and Interphases in Potassium Ion Batteries. Advanced Materials, 2021, 33, e2003741.	11.1	181
22	Ultrathin, Strong, and Highly Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding. ACS Nano, 2021, 15, 8439-8449.	7.3	178
23	Bismuth–Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries. ACS Nano, 2020, 14, 1018-1026.	7.3	176
24	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano, 2019, 13, 745-754.	7.3	162
25	Toward High Performance Thiopheneâ€Containing Conjugated Microporous Polymer Anodes for Lithiumâ€Ion Batteries through Structure Design. Advanced Functional Materials, 2018, 28, 1705432.	7.8	162
26	Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 9562.	6.7	158
27	Mn ₃ O ₄ hollow spheres for lithium-ion batteries with high rate and capacity. Journal of Materials Chemistry A, 2014, 2, 4627-4632.	5.2	155
28	Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 12652-12657.	1.5	150
29	A "Preâ€Constrained Metal Twins―Strategy to Prepare Efficient Dualâ€Metalâ€Atom Catalysts for Cooperative Oxygen Electrocatalysis. Advanced Materials, 2022, 34, e2107421.	11.1	134
30	Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Materials, 2018, 13, 274-282.	9.5	129
31	Metal/Covalentâ€Organic Framework Based Cathodes for Metalâ€ l on Batteries. Advanced Energy Materials, 2022, 12, 2100172.	10.2	124
32	Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 17977-17981.	5.2	122
33	Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A, 2014, 2, 12201-12207.	5.2	121
34	Electrolyteâ€Regulated Solidâ€Electrolyte Interphase Enables Long Cycle Life Performance in Organic Cathodes for Potassiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1807137.	7.8	120
35	Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochemistry Communications, 2018, 86, 34-37.	2.3	95
36	Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy Storage Materials, 2020, 25, 324-333.	9.5	92

#	Article	IF	CITATIONS
37	Inâ€Situ Electropolymerization Enables Ultrafast Long Cycle Life and Highâ€Voltage Organic Cathodes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 11992-11998.	7.2	91
38	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	2.5	90
39	Uniformly Dispersed Freestanding Carbon Nanofiber/Graphene Electrodes Made by a Scalable Biological Method for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1803075.	7.8	83
40	Confined Fe ₂ VO ₄ âŠ,Nitrogenâ€Doped Carbon Nanowires with Internal Void Space for Highâ€Rate and Ultrastable Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1902674.	10.2	81
41	Activation of Oxygenâ€Stabilized Sulfur for Li and Na Batteries. Advanced Functional Materials, 2016, 26, 745-752.	7.8	80
42	Room-Temperature Potassium–Sulfur Batteries Enabled by Microporous Carbon Stabilized Small-Molecule Sulfur Cathodes. ACS Nano, 2019, 13, 2536-2543.	7.3	80
43	Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9751-9757.	5.2	78
44	Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. ACS Applied Materials & Interfaces, 2018, 10, 41380-41388.	4.0	76
45	Rational Molecular Design of Benzoquinoneâ€Derived Cathode Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1909597.	7.8	74
46	Nano-structured carbon-coated CuO hollow spheres as stable and high rate anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 15486.	5.2	64
47	Uniform Mesoporous MnO ₂ Nanospheres as a Surface Chemical Adsorption and Physical Confinement Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 10624-10630.	4.0	60
48	Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small, 2021, 17, e2006424.	5.2	55
49	Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes. Journal of Materials Chemistry A, 2020, 8, 5671-5678.	5.2	54
50	Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wideâ€Temperature Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2107226.	11.1	50
51	Optimization of Molecular Structure and Electrode Architecture of Anthraquinone-Containing Polymer Cathode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42305-42312.	4.0	41
52	High performance potassium–sulfur batteries and their reaction mechanism. Journal of Materials Chemistry A, 2020, 8, 10875-10884.	5.2	40
53	Quinoneâ€Amine Polymer Nanoparticles Prepared through Facile Precipitation Polymerization as Ultrafast and Ultralong Cycle Life Cathode Materials for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	39
54	Ultralong Cycle Life Organic Cathode Enabled by Etherâ€Based Electrolytes for Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2101972.	10.2	37

#	Article	IF	CITATIONS
55	Poorly Soluble 2,6-Dimethoxy-9,10-anthraquinone Cathode for Lithium-Ion Batteries: The Role of Electrolyte Concentration. ACS Applied Materials & Interfaces, 2020, 12, 7179-7185.	4.0	36
56	Insight into the intercalation mechanism of WSe ₂ onions toward metal ion capacitors: sodium rivals lithium. Journal of Materials Chemistry A, 2018, 6, 21605-21617.	5.2	35
57	Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules, 2019, 52, 4222-4231.	2.2	34
58	A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie, 2020, 132, 5311-5315.	1.6	34
59	A Lithiumâ€Organic Primary Battery. Small, 2020, 16, e1906462.	5.2	33
60	A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Science China Chemistry, 2021, 64, 72-81.	4.2	33
61	Storage Mechanism of Alkali Metal Ions in the Hard Carbon Anode: an Electrochemical Viewpoint. ACS Applied Materials & Interfaces, 2021, 13, 38441-38449.	4.0	33
62	Benzoquinone―and Naphthoquinoneâ€Bearing Polymers Synthesized by Ringâ€Opening Metathesis Polymerization as Cathode Materials for Lithiumâ€Ion Batteries. ChemSusChem, 2020, 13, 334-340.	3.6	27
63	Highly Potassiophilic Carbon Nanofiber Paper Derived from Bacterial Cellulose Enables Ultra-Stable Dendrite-Free Potassium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 17629-17638.	4.0	27
64	An Insoluble Anthraquinone Dimer with Nearâ€Plane Structure as a Cathode Material for Lithiumâ€lon Batteries. ChemSusChem, 2020, 13, 2436-2442.	3.6	26
65	Metal–Organic Framework@Polyacrylonitrile-Derived Potassiophilic Nanoporous Carbon Nanofiber Paper Enables Stable Potassium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6245-6252.	2.5	23
66	In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries. Science China Materials, 2021, 64, 2938-2948.	3.5	23
67	A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
68	Molten Lithium-Filled Three-Dimensional Hollow Carbon Tube Mats for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2019, 2, 8303-8309.	2.5	21
69	Facile synthesis of Fe-based metal-organic framework and graphene composite as an anode material for K-ion batteries. Ionics, 2020, 26, 5565-5573.	1.2	21
70	Inâ€Situ Electropolymerization Enables Ultrafast Long Cycle Life and Highâ€Voltage Organic Cathodes for Lithium Batteries. Angewandte Chemie, 2020, 132, 12090-12096.	1.6	21
71	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chemical Engineering Journal, 2021, 405, 126638.	6.6	21
72	Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors. Nano Energy, 2022, 95, 107015.	8.2	18

#	Article	IF	CITATIONS
73	Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. Electrochimica Acta, 2020, 336, 135693.	2.6	16
74	Formation of LiFâ€rich Cathodeâ€Electrolyte Interphase by Electrolyte Reduction. Angewandte Chemie, 2022, 134, .	1.6	16
75	Rapid synthesis of layered K _{<i>x</i>} MnO ₂ cathodes from metal–organic frameworks for potassium-ion batteries. Chemical Science, 2022, 13, 7575-7580.	3.7	16
76	Performance Enhancement of Polymer Electrode Materials for Lithium-Ion Batteries: From a Rigid Homopolymer to Soft Copolymers. ACS Applied Materials & Interfaces, 2020, 12, 32666-32672.	4.0	15
77	Thiourea-based polyimide/RGO composite cathode: A comprehensive study of storage mechanism with alkali metal ions. Science China Materials, 2020, 63, 1929-1938.	3.5	13
78	A poorly soluble organic electrode material for high energy density lithium primary batteries based on a multi-electron reduction. Chemical Communications, 2021, 57, 10791-10794.	2.2	13
79	Mesoporous carbon nanomaterials with tunable geometries and porous structures fabricated by a surface-induced assembly strategy. Energy Storage Materials, 2021, 35, 602-609.	9.5	12
80	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendriteâ€Free Lithiumâ€Metal Anodes. Small, 2022, 18, e2104735.	5.2	10
81	Hierarchical multi-channels conductive framework constructed with rGO modified natural biochar for high sulfur areal loading self-supporting cathode of lithium-sulfur batteries. Chemical Engineering Journal Advances, 2022, 9, 100209.	2.4	9
82	Ultrafast Synthesis of Layered Transition-Metal Oxide Cathodes from Metal–Organic Frameworks for High-Capacity Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24462-24468.	4.0	8
83	Advances in Emerging Crystalline Porous Materials. Small, 2021, 17, e2102331.	5.2	6
84	Optimization of Monomer Molecular Structure for Polymer Electrodes Fabricated through inâ€situ Electroâ€Polymerization Strategy. ChemSusChem, 2021, 14, 4573-4582.	3.6	5
85	Waste Office Paper Derived Celluloseâ€Based Carbon Host in Freestanding Cathodes for Lithiumâ€6ulfur Batteries. ChemElectroChem, 2022, 9, .	1.7	2
86	Titelbild: A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity (Angew. Chem. 13/2020). Angewandte Chemie, 2020, 132, 5005-5005.	1.6	0