## Margaret E Glasner

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8051483/publications.pdf
Version: 2024-02-01


Second-Shell Amino Acid R266 Helps Determine <i>N</i>-Succinylamino Acid Racemase Reaction
Enzymes. Biochemistry, 2021, 60, 3829-3840.
2 How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS Journal, 2020, 287, 1323-1342.

Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. Journal of Biological Chemistry, 2019, 294, 10211-10235.

Comparison of <i>Alicyclobacillus acidocaldarius<|i><i>0<|i>-Succinylbenzoate Synthase to lts
4 Promiscuous 〈i>N</i>-Succinylamino Acid Racemase|<i>0</i>-Succinylbenzoate Synthase Relatives.
Biochemistry, 2018, 57, 3676-3689.
$5 \quad$ Finding enzymes in the gut metagenome. Science, 2017, 355, 577-578.
$6.0 \quad 13$

Promiscuity of Exiguobacterium sp. AT1b o-succinylbenzoate synthase illustrates evolutionary
6 transitions in the OSBS family. Biochemical and Biophysical Research Communications, 2014, 450, 679-684.

7 Role of an Active Site Loop in the Promiscuous Activities of <i>Amycolatopsis<li> sp. T-1-60 NSAR/OSBS.
7 Biochemistry, 2014, 53, 4434-4444.
1.2

11

8 Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family.
Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8535-8540.
3.3

29

9 Divergent Evolution of Ligand Binding in theo-Succinylbenzoate Synthase Family. Biochemistry, 2013, 52, 7512-7521.

Residues Required for Activity in <i>Escherichia coli o<|i>-Succinylbenzoate Synthase (OSBS) Are Not
1.2
11 Mechanisms of Protein Evolution and their Application to Protein Engineering. Advances in
Enzymology and Related Areas of Molecular Biology, 2010, 75, 193-239.

Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. Journal of Structural and Functional Genomics, 2009, 10, 107-125.

Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in
1.2

Two Families of <i>cis</i>, <i> cis</i>-Muconate Lactonizing Enzymes. Biochemistry, 2009, 48, 1445-1453.

Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening. Structure, 2008, 16, 1668-1677.

Evolution of Enzymatic Activities in the Enolase Superfamily: <scp>|</scp>-Rhamnonate Dehydratase.
Biochemistry, 2008, 47, 9944-9954.
1.2

Evolution of Enzymatic Activities in the Enolase Superfamily:â€\%。<scp>d</scp>-Mannonate Dehydratase
from <i>Novosphingobium aromaticivoran</i>s<sup>,</sup>. Biochemistry, 2007, 46, 12896-12908.
1.2
1.6

52

Prediction and assignment of function for a divergent $N$-succinyl amino acid racemase. Nature
3.9

Recognition of Nucleoside Triphosphates during RNA-Catalyzed Primer Extensionâ€. Biochemistry, 2000,

