Jie Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051215/publications.pdf

Version: 2024-02-01

123	6,043	39	74
papers	citations	h-index	g-index
125	125	125	8470 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Interfacial Covalent Bonding Endowing Ti ₃ C ₂ â€Sb ₂ S ₃ Composites High Sodium Storage Performance. Small, 2022, 18, e2104293.	5.2	30
2	Interfacial covalent bonding enables transition metal phosphide superior lithium storage performance. Applied Surface Science, 2022, 582, 152404.	3.1	22
3	Hydrogen Generation by Hydrolysis of MgH2-LiH Composite. Materials, 2022, 15, 1593.	1.3	12
4	A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells. Inorganic Chemistry Frontiers, 2021, 8, 35-40.	3.0	20
5	Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering, 2021, 29, 1-12.	1.7	87
6	LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole. Nano Energy, 2021, 80, 105476.	8.2	46
7	A review of rare-earth oxide films as high k dielectrics in MOS devices— CommemoratingÂtheÂ100thÂanniversaryÂofÂtheÂbirthÂofÂAcademicianÂGuangxianÂXu. Journal of Rare Earths, 2021, 39, 121-128.	2.5	10
8	Ionization inhibition in a polyol/water system for boosting H ₂ generation from NaBH ₄ . RSC Advances, 2021, 11, 510-516.	1.7	0
9	Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25461-25471.	4.0	7
10	Metal hydride mediated water splitting: Electrical energy saving and decoupled H2/O2 generation. Materials Today, 2021, 47, 16-24.	8.3	13
11	The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today, 2021, 40, 101245.	6.2	39
12	Mg2Si promoted magnesio-mechanical reduction of silica into silicon nanoparticles for high-performance Li-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122408.	1.4	7
13	Synthesis and dehydrogenation properties of NaZn(BH4)3·en and NaZn(BH4)3·2en (en = ethylene diamine Journal of Energy Chemistry, 2020, 42, 233-236.	e) _{7.1}	1
14	Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Storage Materials, 2020, 25, 93-99.	9.5	40
15	Lowâ€Temperature Synthesis of Honeycomb CuP ₂ @C in Molten ZnCl ₂ Salt for Highâ€Performance Lithium Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 1975-1979.	7.2	62
16	Ni doping significantly improves dielectric properties of La2O3 films. Journal of Alloys and Compounds, 2020, 822, 153469.	2.8	13
17	Lowâ€Temperature Synthesis of Honeycomb CuP ₂ @C in Molten ZnCl ₂ Salt for Highâ€Performance Lithium Ion Batteries. Angewandte Chemie, 2020, 132, 1991-1995.	1.6	23
18	The progress on aluminum-based anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 25649-25662.	5.2	53

#	Article	IF	CITATIONS
19	Direct plasma phosphorization of Cu foam for Li ion batteries. Journal of Materials Chemistry A, 2020, 8, 16920-16925.	5.2	44
20	Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Research, 2020, 13, 3157-3164.	5.8	39
21	Oxalic Acid Promoted Hydrolysis of Sodium Borohydride for Transition Metal Free Hydrogen Generation. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 706-710.	0.4	0
22	Direct conversion of metal organic frameworks into ultrafine phosphide nanocomposites in multicomponent plasma for wide pH hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 10402-10408.	5.2	15
23	Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe. Renewable Energy, 2020, 153, 1140-1154.	4.3	31
24	Mimicking of Tunichlorin: Deciphering the Importance of a \hat{l}^2 -Hydroxyl Substituent on Boosting the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 2177-2188.	5.5	24
25	Plasma Transforming Ni(OH) ₂ Nanosheets into Porous Nickel Nitride Sheets for Alkaline Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5951-5957.	4.0	48
26	Yttrium trihydride enhanced lithium storage in carbon materials. Carbon, 2020, 164, 317-323.	5.4	4
27	Plasma modified BiOCl/sulfonated graphene microspheres as efficient photo-compensated electrocatalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2020, 10, 4786-4793.	2.1	12
28	Oxalic Acid Promoted Hydrolysis of Sodium Borohydride for Transition Metal Free Hydrogen Generation. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 1011-1015.	0.4	3
29	Highâ€pressure hydrogen storage properties of Ti x Cr 1 â^' y Fe y Mn 1.0 alloys. International Journal of Energy Research, 2019, 43, 5759-5774.	2.2	17
30	Application of hydrogen for rare-earth gadolinium purification and thermodynamic simulation of system. Journal of Materials Science, 2019, 54, 13334-13343.	1.7	22
31	Promoting hydrogen absorption of liquid organic hydrogen carriers by solid metal hydrides. Journal of Materials Chemistry A, 2019, 7, 16677-16684.	5.2	32
32	Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Advances, 2019, 9, 2848-2856.	1.7	10
33	Development of Ti1.02Cr2-x-yFexMny (0.6â‰ x â‰ 6 .75, y=0.25, 0.3) alloys for high hydrogen pressure metal hydride system. International Journal of Hydrogen Energy, 2019, 44, 15087-15099.	3.8	28
34	Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8129-8135.	5.2	32
35	Plasma enabled non-thermal phosphorization for nickel phosphide hydrogen evolution catalysts. Chemical Communications, 2019, 55, 4202-4205.	2.2	20
36	A rare earth hydride supported ruthenium catalyst for the hydrogenation of $\langle i \rangle N \langle i \rangle$ -heterocycles: boosting the activity $\langle i \rangle$ via $\langle i \rangle$ a new hydrogen transfer path and controlling the stereoselectivity. Chemical Science, 2019, 10, 10459-10465.	3.7	51

#	Article	IF	Citations
37	Behavior of impurity elements in pure gadolinium during ultra-high purification. Vacuum, 2019, 162, 67-71.	1.6	19
38	Air Plasma Activation of Catalytic Sites in a Metalâ€Cyanide Framework for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1800085.	10.2	132
39	Sn-C binary nanocomposites for lithium ion batteries: Core-shell vs. multilayer structure. Electrochimica Acta, 2018, 267, 1-7.	2.6	27
40	A highly efficient Ni–Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. Journal of Materials Chemistry A, 2018, 6, 9228-9235.	5.2	83
41	Synergism induced exceptional capacity and complete reversibility in Mg–Y thin films: enabling next generation metal hydride electrodes. Energy and Environmental Science, 2018, 11, 1563-1570.	15.6	15
42	Hydrogen storage properties of Y-Mg-Cu-H nanocomposite obtained by hydrogen-induced decomposition of YMg 4 Cu intermetallic. Journal of Alloys and Compounds, 2018, 751, 176-182.	2.8	25
43	Rücktitelbild: Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption (Angew.) Tj ETQq1	1 0.78431 1.6	4 rgBT /Ov
44	Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption. Angewandte Chemie - International Edition, 2018, 57, 2219-2223.	7.2	12
45	Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption. Angewandte Chemie, 2018, 130, 2241-2245.	1.6	2
46	Chemical induced fragmentation of MOFs for highly efficient Ni-based hydrogen evolution catalysts. Nanoscale Horizons, 2018, 3, 218-225.	4.1	30
47	Turning optical switching properties of Mg-Y films in electrochemical process by tailoring composition. Materials Research Express, 2018, 5, 036419.	0.8	1
48	A Universal Method to Engineer Metal Oxide–Metal–Carbon Interface for Highly Efficient Oxygen Reduction. ACS Nano, 2018, 12, 3042-3051.	7.3	125
49	SnSO4 modified ZnO nanostructure for highly sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2018, 255, 1153-1159.	4.0	27
50	Plasma-processed homogeneous magnesium hydride/carbon nanocomposites for highly stable lithium storage. Nano Research, 2018, 11, 2724-2732.	5.8	8
51	Synergism of Rare Earth Trihydrides and Graphite in Lithium Storage: Evidence of Hydrogenâ€Enhanced Lithiation. Advanced Materials, 2018, 30, 1704353.	11.1	25
52	A high capacity nanocrystalline Sn anode for lithium ion batteries from hydrogenation induced phase segregation of bulk YSn ₂ . Journal of Materials Chemistry A, 2018, 6, 21266-21273.	5.2	8
53	Alkali and Alkaline Earth Hydrides-Driven N ₂ Activation and Transformation over Mn Nitride Catalyst. Journal of the American Chemical Society, 2018, 140, 14799-14806.	6.6	81
54	Experimental investigation and thermodynamic assessment of the yttrium-hydrogen binary system. Progress in Natural Science: Materials International, 2018, 28, 332-336.	1.8	19

#	Article	IF	CITATIONS
55	A Peapodâ€like CoP@C Nanostructure from Phosphorization in a Lowâ€Temperature Molten Salt for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 10344-10348.	1.6	38
56	Effect of ammoniaâ€derived species on visibleâ€light photocatalytic activity of Au supported on amorphous TiO ₂ activated by plasma. Plasma Processes and Polymers, 2018, 15, 1800095.	1.6	9
57	A Peapodâ€like CoP@C Nanostructure from Phosphorization in a Lowâ€Temperature Molten Salt for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 10187-10191.	7.2	87
58	Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Research, 2017, 10, 1950-1958.	5.8	76
59	New approaches for rare earth-magnesium based hydrogen storage alloys. Progress in Natural Science: Materials International, 2017, 27, 50-57.	1.8	66
60	Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5937-5946.	4.0	84
61	Boric acid-destabilized lithium borohydride with a 5.6 wt% dehydrogenation capacity at moderate temperatures. Dalton Transactions, 2017, 46, 4499-4503.	1.6	10
62	Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries. Chemical Communications, 2017, 53, 6223-6226.	2.2	20
63	High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15502-15509.	4.0	20
64	Combining catalysis and hydrogen storage in direct borohydride fuel cells: towards more efficient energy utilization. Journal of Materials Chemistry A, 2017, 5, 14310-14318.	5.2	14
65	Enhancing the reactivity of nickel ($\langle scp \rangle ii \langle scp \rangle in hydrogen evolution reactions (HERs) by \hat{l}^2-hydrogenation of porphyrinoid ligands. Chemical Science, 2017, 8, 5953-5961.$	3.7	64
66	Silica-Derived Hydrophobic Colloidal Nano-Si for Lithium-Ion Batteries. ACS Nano, 2017, 11, 6065-6073.	7.3	77
67	Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO ₂ under Visible Light: Moisture Indispensability and Light Enhancement. ACS Catalysis, 2017, 7, 6514-6524.	5.5	121
68	Catalytic effect of (Ti _{0.85} Zr _{0.15}) _{1.05} Mn _{1.2} Cr _{0.6} V _{0.1} <td>>Ca</td> <td>∙071or</td>	> C a	∙071or
69	Experimental study and thermodynamic assessment of the dysprosium-hydrogen binary system. Journal of Alloys and Compounds, 2017, 696, 60-66.	2.8	11
70	Arc-discharge synthesis of dual-carbonaceous-layer-coated tin nanoparticles with tunable structures and high reversible lithium storage capacity. Journal of Materials Chemistry A, 2017, 5, 13769-13775.	5.2	7
71	MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35390-35397.	4.0	151
72	Hydrogen generation from reactions of hydrides with hydrated solids in the solid state. RSC Advances, 2016, 6, 36863-36869.	1.7	5

#	Article	IF	Citations
73	Study on the thermodynamics of the gadolinium-hydrogen binary system (H/GdÂ=Â0.0–2.0) and implications to metallic gadolinium purification. Journal of Alloys and Compounds, 2016, 673, 131-137.	2.8	12
74	Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline. ACS Applied Materials & Dispersed in Polyaniline. ACS Applied Materials & Dispersed in Polyaniline.	4.0	76
75	An efficient Co–N–C oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework. RSC Advances, 2016, 6, 37965-37973.	1.7	72
76	Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110-119.	8.2	434
77	Promoted hydrogen release from alkali metal borohydrides in ionic liquids. Inorganic Chemistry Frontiers, 2016, 3, 1137-1145.	3.0	15
78	2-Aminoimidazole borohydride as a hydrogen carrier. RSC Advances, 2016, 6, 103299-103303.	1.7	3
79	Ni–Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid. ACS Nano, 2016, 10, 10397-10403.	7.3	125
80	Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale, 2016, 8, 10511-10527.	2.8	97
81	A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy, 2016, 22, 111-119.	8.2	166
82	Efficient Synthesis of an Aluminum Amidoborane Ammoniate. Energies, 2015, 8, 9107-9116.	1.6	16
83	Removal of gaseous impurities from terbium byÂhydrogen plasma arc melting. International Journal of Hydrogen Energy, 2015, 40, 7943-7948.	3.8	12
84	Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 3522-3528.	5.2	40
85	The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 8272-8275.	5.2	129
86	Opposite particle size effects on the adsorption kinetics of ZIF-8 for gaseous and solution adsorbates. RSC Advances, 2015, 5, 58595-58599.	1.7	17
87	MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16435-16439.	5.2	146
88	A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO ₄ modified ZnO nanoparticles. RSC Advances, 2015, 5, 75098-75104.	1.7	25
89	Ammonia borane confined by nitrogen-containing carbon nanotubes: enhanced dehydrogenation properties originating from synergetic catalysis and nanoconfinement. Journal of Materials Chemistry A, 2015, 3, 20494-20499.	5.2	34
90	MgCl 2 promoted hydrolysis of MgH 2 nanoparticles for highly efficient H 2 generation. Nano Energy, 2014, 10, 337-343.	8.2	78

#	Article	IF	Citations
91	Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. Journal of Materials Chemistry A, 2014, 2, 2168-2173.	5.2	102
92	Metal (metal = Fe, Co), N codoped nanoporous carbon for efficient electrochemical oxygen reduction. RSC Advances, 2014, 4, 37779-37785.	1.7	24
93	MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 14064-14070.	5.2	407
94	Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. Journal of Materials Chemistry A, 2014, 2, 5724-5729.	5.2	98
95	Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy and Environmental Science, 2014, 7, 2715.	15.6	434
96	Highly efficient visible/near-IR-light-driven photocatalytic H2 production over asymmetric phthalocyanine-sensitized TiO2. RSC Advances, 2013, 3, 14363.	1.7	50
97	Tandem plasma reactions for Sn/C composites with tunable structure and high reversible lithium storage capacity. Nano Energy, 2013, 2, 1314-1321.	8.2	58
98	Excellent hydrogen sorption kinetics of thick Mg–Pd films under mild conditions by tailoring their structures. RSC Advances, 2013, 3, 4167.	1.7	26
99	Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma–metal reaction. Journal of Materials Chemistry, 2012, 22, 19831.	6.7	52
100	Catalytic Thermal Decomposition of Ammonia–Borane by Wellâ€Dispersed Metal Nanoparticles on Mesoporous Substrates Prepared by Magnetron Sputtering. European Journal of Inorganic Chemistry, 2012, 2012, 5722-5728.	1.0	9
101	Two pillared-layer metal–organic frameworks constructed with Co(ii), 1,2,4,5-benzenetetracarboxylate, and 4,4′-bipyridine: syntheses, crystal structures, and gas adsorption properties. CrystEngComm, 2012, 14, 2296.	1.3	22
102	Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy, 2012, 1, 590-601.	8.2	250
103	Preparation and study of alkyl carbamylated polyrotaxanes with large hysteresis during sol–gel phase transition. Polymer Chemistry, 2011, 2, 1797.	1.9	10
104	Synthesis and Hydrogen Storage Behaviour of Pure Mg ₂ FeH ₆ at Nanoscale. Materials Transactions, 2011, 52, 618-622.	0.4	9
105	Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism. Journal of Nanoparticle Research, 2011, 13, 4445-4450.	0.8	2
106	Plasmaâ€Assisted Approaches in Inorganic Nanostructure Fabrication. Advanced Materials, 2010, 22, 1451-1473.	11.1	158
107	Hydrogen desorption properties of Mg thin films at room temperature. Journal of Power Sources, 2010, 195, 1190-1194.	4.0	23
108	Improved hydrogen storage properties in Mg-based thin films by tailoring structures. International Journal of Hydrogen Energy, 2010, 35, 8331-8336.	3.8	24

#	Article	IF	CITATIONS
109	Thermal stability and magnetic anisotropy of nickel nanoplates. Journal of Materials Science, 2009, 44, 4599-4603.	1.7	3
110	Hydrogen absorption–desorption, optical transmission properties and annealing effect of Mg thin films prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2009, 34, 1910-1915.	3.8	39
111	Weak ferromagnetism and spin-glass state with nanosized nickel carbide. Journal of Applied Physics, 2009, 105, 123923.	1.1	21
112	Structure changes and optical properties of Mg2Ni switchable mirrors. International Journal of Hydrogen Energy, 2008, 33, 7207-7213.	3.8	10
113	Superior hydrogen desorption kinetics of Mg(NH2)2 hollow nanospheres mixed with MgH2 nanoparticles. Applied Physics Letters, 2008, 92, 231910.	1.5	20
114	Improved Magnetic Anisotropy of Monodispersed Triangular Nickel Nanoplates. Journal of Physical Chemistry C, 2007, 111, 6630-6633.	1.5	54
115	Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 221-226.	1.7	113
116	PREPARATION OF ZnO NANOPARTICLES BY PRECIPITATION/MECHANOCHEMICAL METHOD. , 2003, , .		0
117	PREPARATION OF ZnO NANOPARTICLES BY PRECIPITATION/MECHANOCHEMICAL METHOD. International Journal of Nanoscience, 2002, 01, 563-567.	0.4	4
118	Enhancement of Second Harmonic Generation and Photocurrent Generation of a Novel Stilbazolium Dye Dimer in Langmuirâ^Blodgett Monolayer Films. Chemistry of Materials, 2001, 13, 192-196.	3.2	25
119	Effect of heteroatoms on photocurrent generation from a series of styryl dye Langmuir–Blodgett films. Journal of Materials Chemistry, 2000, 10, 921-926.	6.7	7
120	Photoelectric conversion and second-order optical nonlinearity of Langmuir–Blodgett films of a novel dipolar two-dimensional material. Journal of Materials Chemistry, 2000, 10, 1287-1290.	6.7	7
121	The subtle role of heteroaromatics in the second-order susceptibility in a series of amphiphilic styryl dye Langmuir–Blodgett films. New Journal of Chemistry, 2000, 24, 317-321.	1.4	4
122	Novel Multifunctional Umbrella Molecule Material Combining Photoelectric Conversion and Second-Order Optical Nonlinearities in Langmuirâ 'Blodgett Monolayers. Journal of Physical Chemistry B, 2000, 104, 5090-5095.	1.2	26
123	Photosensitized Electron Injection from an ITO Electrode to Trichromophore Dyes Deposited on Langmuirâ Blodgett Films. Langmuir, 1999, 15, 7276-7281.	1.6	32