Alejandro Vigna-GÃ³mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stellar response after stripping as a model for common-envelope outcomes. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2326-2338.	4.4	16
2	COMPAS: A rapid binary population synthesis suite. Journal of Open Source Software, 2022, 7, 3838.	4.6	9
3	Rapid Stellar and Binary Population Synthesis with COMPAS. Astrophysical Journal, Supplement Series, 2022, 258, 34.	7.7	57
4	Multimessenger Constraints on Magnetic Fields in Merging Black Hole–Neutron Star Binaries. Astrophysical Journal, 2022, 927, 56.	4.5	8
5	Wide binary pulsars from electron-capture supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 513, 6105-6110.	4.4	4
6	Mergers prompted by dynamics in compact, multiple-star systems: a stellar-reduction case for the massive triple TIC 470710327. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L50-L55.	3.3	5
7	Massive Stellar Triples Leading to Sequential Binary Black Hole Mergers in the Field. Astrophysical Journal Letters, 2021, 907, L19.	8.3	45
8	Wind Mass-loss Rates of Stripped Stars Inferred from Cygnus X-1. Astrophysical Journal, 2021, 908, 118.	4.5	29
9	Chemically homogeneous evolution: a rapid population synthesis approach. Monthly Notices of the Royal Astronomical Society, 2021, 505, 663-676.	4.4	33
10	Impact of massive binary star and cosmic evolution on gravitational wave observations I: black hole–neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5028-5063.	4.4	83
11	Fallback Supernova Assembly of Heavy Binary Neutron Stars and Light Black Hole–Neutron Star Pairs and the Common Stellar Ancestry of GW190425 and GW200115. Astrophysical Journal Letters, 2021, 920, L17.	8.3	12
12	Constraints on Weak Supernova Kicks from Observed Pulsar Velocities. Astrophysical Journal Letters, 2021, 920, L37.	8.3	18
13	Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4705-4720.	4.4	40
14	Formation pathway for lonely stripped-envelope supernova progenitors: implications for Cassiopeia A. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1154-1171.	4.4	19
15	Common envelope episodes that lead to double neutron star formation. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	40
16	Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-star Companion inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics. Astrophysical Journal, 2020, 892, 13.	4.5	57
17	An extremely energetic supernova from a very massive star in a dense medium. Nature Astronomy, 2020, 4, 893-899.	10.1	31
18	Detecting double neutron stars with LISA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3061-3072.	4.4	49

#	Article	lF	CITATIONS
19	Luminous Red Novae: population models and future prospects. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3229-3240.	4.4	42
20	Binary population synthesis with probabilistic remnant mass and kick prescriptions. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1380-1384.	4.4	49
21	<scp>stroopwafel</scp> : simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5228-5248.	4.4	30
22	The effect of the metallicity-specific star formation history on double compact object mergers. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3740-3759.	4.4	192
23	Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae. Astrophysical Journal Letters, 2019, 876, L29.	8.3	28
24	The Impact of Pair-instability Mass Loss on the Binary Black Hole Mass Distribution. Astrophysical Journal, 2019, 882, 121.	4.5	114
25	On the formation history of Galactic double neutron stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4009-4029.	4.4	189
26	Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4685-4695.	4.4	100
27	Formation of the first three gravitational-wave observations through isolated binary evolution. Nature Communications, 2017, 8, 14906.	12.8	270
28	Exploring the Parameter Space of Compact Binary Population Synthesis. Proceedings of the International Astronomical Union, 2016, 12, 46-50.	0.0	8