Andrey A Poloznikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8050852/publications.pdf

Version: 2024-02-01

687220 794469 29 418 13 19 g-index citations h-index papers 30 30 30 623 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 474.	2.0	61
2	In vitro and in silico liver models: Current trends, challenges and opportunities. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 397-412.	0.9	32
3	Activation of Nrf2 and Hypoxic Adaptive Response Contribute to Neuroprotection Elicited by Phenylhydroxamic Acid Selective HDAC6 Inhibitors. ACS Chemical Neuroscience, 2018, 9, 894-900.	1.7	26
4	Bach1 derepression is neuroprotective in a mouse model of Parkinsonâ∈™s disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
5	Highly sensitive, stable and selective hydrogen peroxide amperometric biosensors based on peroxidases from different sources wired by Os-polymer: A comparative study. Solid State Ionics, 2018, 314, 178-186.	1.3	23
6	Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Frontiers in Aging Neuroscience, 2021, 13, 673205.	1.7	22
7	Towards embedding Caco-2 model of gut interface in a microfluidic device to enable multi-organ models for systems biology. BMC Systems Biology, 2019, 13, 19.	3.0	20
8	L-ascorbic acid: A true substrate for HIF prolyl hydroxylase?. Biochimie, 2018, 147, 46-54.	1.3	19
9	HIF Prolyl Hydroxylase Inhibitors for COVID-19 Treatment: Pros and Cons. Frontiers in Pharmacology, 2020, 11, 621054.	1.6	19
10	LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Frontiers in Molecular Biosciences, 2019, 6, 122.	1.6	18
11	Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model. Antioxidants, 2020, 9, 662.	2.2	18
12	Bioactive Flavonoids and Catechols as Hif1 and Nrf2 Protein Stabilizers - Implications for Parkinson's Disease., 2016, 7, 745.		17
13	A Post-Processing Algorithm for miRNA Microarray Data. International Journal of Molecular Sciences, 2020, 21, 1228.	1.8	17
14	Interprotein Coupling Enhances the Electrocatalytic Efficiency of Tobacco Peroxidase Immobilized at a Graphite Electrode. Analytical Chemistry, 2015, 87, 10807-10814.	3.2	15
15	Fenton-like Inactivation of Tobacco Peroxidase Electrocatalysis at Negative Potentials. ACS Catalysis, 2016, 6, 7452-7457.	5.5	14
16	Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3′-diindolylmethane and chemotherapy drugs. Biochimie, 2020, 179, 217-227.	1.3	13
17	Which cytochrome P450 metabolizes phenazepam? Step by step <i>in silico</i> , <i>in vitro</i> , and <i>in vivo</i> studies. Drug Metabolism and Personalized Therapy, 2018, 33, 65-73.	0.3	10
18	Influence of tryptophan mutation on the direct electron transfer of immobilized tobacco peroxidase. Electrochimica Acta, 2020, 351, 136465.	2.6	8

#	Article	IF	CITATIONS
19	The Fe (III)/Fe(II) redox couple as a probe of immobilized tobacco peroxidase: Effect of the immobilization protocol. Electrochimica Acta, 2019, 299, 55-61.	2.6	7
20	Effect of the Expression of ELOVL5 and IGFBP6 Genes on the Metastatic Potential of Breast Cancer Cells. Frontiers in Genetics, 2021, 12, 662843.	1.1	6
21	"Branched Tail―Oxyquinoline Inhibitors of HIF Prolyl Hydroxylase: Early Evaluation of Toxicity and Metabolism Using Liver-on-a-chip. Drug Metabolism Letters, 2019, 13, 45-52.	0.5	5
22	Highly Sensitive Hydrogen Peroxide Biosensor Based on Tobacco Peroxidase Immobilized on <i>p</i> à€Phenylenediamine Diazonium Cation Grafted Carbon Nanotubes: Preventing Fentonâ€like Inactivation at Negative Potential. ChemElectroChem, 2021, 8, 2495-2504.	1.7	4
23	Identification of a potent Nrf2 displacement activator among aspirin-containing prodrugs. Neurochemistry International, 2021, 149, 105148.	1.9	4
24	Probable Mechanisms of Doxorubicin Antitumor Activity Enhancement by Ginsenoside Rh2. Molecules, 2022, 27, 628.	1.7	4
25	Fullerene–Interfaced Porphyrin Ligand in Affinity Chromatography of Membrane Proteins. Chromatographia, 2008, 68, 295-298.	0.7	3
26	9-ING-41, a Small Molecule Inhibitor of GSK-3 \hat{l}^2 , Potentiates the Effects of Chemotherapy on Colorectal Cancer Cells. Frontiers in Pharmacology, 2021, 12, 777114.	1.6	3
27	Structure–Activity Relationships and Transcriptomic Analysis of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors. Antioxidants, 2022, 11, 220.	2.2	2
28	Selective changes in expression of integrin \hat{l}_{\pm} -subunits in the intestinal epithelial Caco-2 cells under conditions of hypoxia and microcirculation. Bulletin of Russian State Medical University, 2020, , .	0.3	1
29	A method for rapid generation of model intestinal barriers in vitro. Bulletin of Russian State Medical University, 2020, , .	0.3	0