
A Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8050371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hybrid machine learning model for predicting continuous cooling transformation diagrams in welding heat-affected zone of low alloy steels. Journal of Materials Science and Technology, 2022, 107, 207-215.	10.7	22
2	Computational and comparative aspects of two carbon nanosheets with respect to some novel topological indices. Ain Shams Engineering Journal, 2022, 13, 101672.	6.1	33
3	A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design. Journal of Materials Science, 2022, 57, 10755-10768.	3.7	15
4	Percentage Incidences of Bacteria in Mahseer (Tor putitora), Silver carp (Hypophthalmichthys) Tj ETQq0 0 0 rgBT Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology, 2022, 84, e251747.	Overlock 0.9	2 10 Tf 50 62 1
5	Minimum Zagreb Eccentricity Indices of Two-Mode Network with Applications in Boiling Point and Benzenoid Hydrocarbons. Mathematics, 2022, 10, 1393.	2.2	24
6	Prediction of Hardenability Curves for Non-Boron Steels via a Combined Machine Learning Model. Materials, 2022, 15, 3127.	2.9	6
7	A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications. Journal of Molecular Modeling, 2022, 28, .	1.8	29
8	Learning-detailed 3D face reconstruction based on convolutional neural networks from a single image. Neural Computing and Applications, 2021, 33, 5951-5964.	5.6	7
9	Electronic Guidance Cane for Users Having Partial Vision Loss Disability. Wireless Communications and Mobile Computing, 2021, 2021, 1-15.	1.2	4
10	Study on time-temperature-transformation diagrams of stainless steel using machine-learning approach. Computational Materials Science, 2020, 171, 109282.	3.0	25
11	Dissolution Behavior and Kinetics of γ′ Phase During Solution Treatment in Powder Metallurgy Nickel-Based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1075-1084.	2.2	14
12	A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels. Journal of Alloys and Compounds, 2020, 823, 153694.	5.5	23
13	Prediction of Continuous Cooling Transformation Diagrams for Ni-Cr-Mo Welding Steels via Machine Learning Approaches. Jom, 2020, 72, 3926-3934.	1.9	14
14	Modulating the photo-active anatase TiO ₂ by cationic co-dopants: A case of iron and lanthanum. Materials Research Express, 2019, 6, 065503.	1.6	1
15	An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon, 2019, 5, e03060.	3.2	18
16	Evaluation of topology-dependent growth rate equations of three-dimensional grains using realistic microstructure simulations. Materials Research Express, 2019, 6, 026523.	1.6	7
17	Precursor-induced template free hydrothermal synthesis of faujasite and its application in catalytic pyrolysis. Materials Research Express, 2017, 4, 055009.	1.6	5
18	Enhancing the photoactivity of TiO ₂ by codoping with silver and molybdenum: the effect of dopant concentration on the photoelectrochemical properties. Materials Research Express, 2017, 4, 045023.	1.6	10

A Ullah

#	Article	IF	CITATIONS
19	Simulations of grain growth in realistic 3D polycrystalline microstructures and the MacPherson–Srolovitz equation. Materials Research Express, 2017, 4, 066502.	1.6	7
20	Effect of impact force on Ti–10Mo alloy powder compaction by high velocity compaction technique. Materials & Design, 2014, 54, 149-153.	5.1	14
21	Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron. Materials Characterization, 2014, 91, 65-75.	4.4	27
22	Advancement in the photocatalytic properties of TiO2 by vanadium and yttrium codoping: Effect of impurity concentration on the photocatalytic activity. Separation and Purification Technology, 2014, 130, 15-18.	7.9	15
23	Effect of Ag doping concentration on the electronic and optical properties of anatase TiO2: a DFT-based theoretical study. Research on Chemical Intermediates, 2013, 39, 1633-1644.	2.7	20
24	Neighborhood topological effect on grain topology-size relationship in three-dimensional polycrystalline microstructures. Science Bulletin, 2013, 58, 3704-3708.	1.7	8
25	Ab-initio calculations of synergistic chromium–nitrogen codoping effects on the electronic and optical properties of anatase TiO2. Vacuum, 2013, 92, 32-38.	3.5	27
26	Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. Materials Characterization, 2013, 82, 130-139.	4.4	22
27	Optimal approach of three-dimensional microstructure reconstructions and visualizations. Materials Express, 2013, 3, 109-118.	0.5	18
28	Topological correlations of grain faces in polycrystal with experimental verification. Europhysics Letters, 2013, 104, 56006.	2.0	4
29	Topological correlations of three-dimensional grains. Applied Physics Letters, 2012, 101, 041910.	3.3	14
30	A note on grain topology-size relationship of three-dimensional polycrystalline microstructures. Europhysics Letters, 2012, 99, 28001.	2.0	4
31	A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Computational Materials Science, 2012, 62, 227-234.	3.0	72
32	Synthesis of novel clinopinacoid structure of stannous oxide and hydrogen absorption characteristics. Materials Letters, 2012, 78, 50-53.	2.6	13
33	On the sampling of three-dimensional polycrystalline microstructures for distribution determination. Journal of Microscopy, 2011, 244, 214-222.	1.8	16
34	Teaching "The Outline of China―Course to the Foreign Students Using Moodle. Advances in Intelligent and Soft Computing, 2011, , 229-236.	0.2	1
35	Analysis of Density and Mechanical Properties of Iron Powder with Upper Relaxation Assist through High Velocity Compaction. Materials Science Forum, 0, 749, 41-46.	0.3	3