
Michael Chamberlain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8049409/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nature Communications, 2021, 12, 5349.	12.8	41
2	Cell invasion in digital microfluidic microgel systems. Science Advances, 2020, 6, eaba9589.	10.3	24
3	Digital microfluidic isolation of single cells for -Omics. Nature Communications, 2020, 11, 5632.	12.8	85
4	The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14823-14828.	7.1	79
5	A digital microfluidic system for serological immunoassays in remote settings. Science Translational Medicine, 2018, 10, .	12.4	117
6	Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells. Small, 2018, 14, e1803342.	10.0	41
7	Escape from an Optoelectronic Tweezer Trap: experimental results and simulations. Optics Express, 2018, 26, 5300.	3.4	19
8	Pre-concentration by liquid intake by paper (P-CLIP): a new technique for large volumes and digital microfluidics. Lab on A Chip, 2017, 17, 2272-2280.	6.0	27
9	Towards a personalized approach to aromatase inhibitor therapy: a digital microfluidic platform for rapid analysis of estradiol in core-needle-biopsies. Lab on A Chip, 2017, 17, 1594-1602.	6.0	27
10	Collagen modules for <i>in situ</i> delivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 363-373.	2.7	8
11	Digital Microfluidics for Immunoprecipitation. Analytical Chemistry, 2016, 88, 10223-10230.	6.5	33
12	Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.	27.5	471
13	Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosensors and Bioelectronics, 2016, 77, 845-852.	10.1	69
14	Cell Interactions with Vascular Regenerative MAAâ€Based Materials in the Context of Wound Healing. Advanced Healthcare Materials, 2015, 4, 2375-2387.	7.6	25
15	In Vivo Remodelling of Vascularizing Engineered Tissues. Annals of Biomedical Engineering, 2015, 43, 1189-1200.	2.5	9
16	Digital Microfluidic Cell Culture. Annual Review of Biomedical Engineering, 2015, 17, 91-112.	12.3	65
17	Digital microfluidic immunocytochemistry in single cells. Nature Communications, 2015, 6, 7513.	12.8	98
18	Commentary on: "In Vivo Remodelling of Vascularizing Engineered Tissues― Annals of Biomedical Engineering, 2015, 43, 1271-1271.	2.5	0

#	Article	IF	CITATIONS
19	Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10673-10678.	7.1	16
20	A droplet-based screen for wavelength-dependent lipid production in algae. Energy and Environmental Science, 2014, 7, 2366.	30.8	48
21	Hepatic organoids for microfluidic drug screening. Lab on A Chip, 2014, 14, 3290.	6.0	126
22	The Modular Approach. , 2013, , 119-148.		1
23	Bone Marrow-Derived Mesenchymal Stromal Cells Enhance Chimeric Vessel Development Driven by Endothelial Cell-Coated Microtissues. Tissue Engineering - Part A, 2012, 18, 285-294.	3.1	43
24	Toward anIn VitroVasculature: Differentiation of Mesenchymal Stromal Cells Within an Endothelial Cell-Seeded Modular Construct in a Microfluidic Flow Chamber. Tissue Engineering - Part A, 2012, 18, 744-756.	3.1	31
25	A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab on A Chip, 2012, 12, 627-634.	6.0	90
26	Chimeric Vessel Tissue Engineering Driven by Endothelialized Modules in Immunosuppressed Sprague-Dawley Rats. Tissue Engineering - Part A, 2011, 17, 151-160.	3.1	31
27	Deregulation of Rab5 and Rab4 proteins in p85R274A-expressing cells alters PDGFR trafficking. Cellular Signalling, 2010, 22, 1562-1575.	3.6	40
28	Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proceedings of the United States of America, 2010, 107, 5471-5476.	7.1	175
29	Fabrication of Micro-tissues using Modules of Collagen Gel Containing Cells. Journal of Visualized Experiments, 2010, , .	0.3	8
30	Disrupted RabGAP Function of the p85 Subunit of Phosphatidylinositol 3-Kinase Results in Cell Transformation. Journal of Biological Chemistry, 2008, 283, 15861-15868.	3.4	37
31	The Smaller Isoforms of Ankyrin 3 Bind to the p85 Subunit of Phosphatidylinositol 3â€2-Kinase and Enhance Platelet-derived Growth Factor Receptor Down-regulation. Journal of Biological Chemistry, 2006, 281, 5956-5964.	3.4	26
32	Measurement of the Interaction of the p85α Subunit of Phosphatidylinositol 3â€Kinase with Rab5. Methods in Enzymology, 2005, 403, 541-552.	1.0	5
33	Assay and Stimulation of the Rab5 GTPase by the p85α Subunit of Phosphatidylinositol 3â€Kinase. Methods in Enzymology, 2005, 403, 552-561.	1.0	7
34	Identification of Key Residues in the A-Raf Kinase Important for Phosphoinositide Lipid Binding Specificity. Biochemistry, 2005, 44, 3432-3440.	2.5	28
35	The p85α Subunit of Phosphatidylinositol 3′-Kinase Binds to and Stimulates the GTPase Activity of Rab Proteins. Journal of Biological Chemistry, 2004, 279, 48607-48614.	3.4	98
36	Expression of the ExeAB complex of Aeromonas hydrophila is required for the localization and assembly of the ExeD secretion port multimer. Molecular Microbiology, 2002, 44, 217-231.	2.5	44