
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048917/publications.pdf Version: 2024-02-01

LISA DIEDI

#	Article	IF	CITATIONS
1	Mutations and prognosis in primary myelofibrosis. Leukemia, 2013, 27, 1861-1869.	7.2	653
2	Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood, 2014, 124, 2507-2513.	1.4	575
3	Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood, 2014, 123, 1552-1555.	1.4	346
4	Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood, 2014, 124, 1062-1069.	1.4	340
5	Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: incidence, risk factors, and effect of treatments. Haematologica, 2008, 93, 372-380.	3.5	316
6	IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia, 2010, 24, 1302-1309.	7.2	300
7	Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood, 2009, 114, 1477-1483.	1.4	196
8	A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer, 2014, 120, 513-520.	4.1	165
9	Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood, 2011, 118, 167-176.	1.4	153
10	Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica, 2008, 93, 41-48.	3.5	146
11	Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications, 2015, 6, 6691.	12.8	145
12	Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood, 2011, 118, 2069-2076.	1.4	144
13	Masked polycythemia Vera (mPV): Results of an international study. American Journal of Hematology, 2014, 89, 52-54.	4.1	130
14	Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood, 2014, 123, 2157-2160.	1.4	115
15	In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood, 2014, 124, 3021-3023.	1.4	112
16	Frequent deletions of <i>JARID2</i> in leukemic transformation of chronic myeloid malignancies. American Journal of Hematology, 2012, 87, 245-250.	4.1	107
17	Hydroxyureaâ€related toxicity in 3,411 patients with Ph'â€negative MPN. American Journal of Hematology, 2012, 87, 552-554.	4.1	105
18	Increased Risk of Lymphoid Neoplasms in Patients with Philadelphia Chromosome–Negative Myeloproliferative Neoplasms. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2068-2073.	2.5	100

#	Article	IF	CITATIONS
19	Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood, 2014, 123, 1833-1835.	1.4	95
20	Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood, 2012, 119, 2239-2241.	1.4	90
21	<i>JAK2</i> allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Therapeutic Advances in Hematology, 2011, 2, 21-32.	2.5	82
22	Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: A study on 359 patients of the AGIMM group. American Journal of Hematology, 2016, 91, 681-686.	4.1	80
23	Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value. Leukemia, 2014, 28, 1811-1818.	7.2	75
24	Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia, 2014, 28, 1052-1059.	7.2	66
25	The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils from patients with polycythemia vera. Haematologica, 2009, 94, 1537-1545.	3.5	58
26	Ruxolitinibâ€induced reversal of alopecia universalis in a patient with essential thrombocythemia. American Journal of Hematology, 2015, 90, 82-83.	4.1	56
27	Clinical presentation and management practice of systemic mastocytosis. A survey on 460 Italian patients. American Journal of Hematology, 2016, 91, 692-699.	4.1	54
28	Splanchnic vein thromboses associated with myeloproliferative neoplasms: An international, retrospective study on 518 cases. American Journal of Hematology, 2020, 95, 156-166.	4.1	53
29	Ruxolitinib for essential thrombocythemia refractory to or intolerant of hydroxyurea: long-term phase 2 study results. Blood, 2017, 130, 1768-1771.	1.4	52
30	Leukocytosis is a risk factor for recurrent arterial thrombosis in young patients with polycythemia vera and essential thrombocythemia. American Journal of Hematology, 2010, 85, 97-100.	4.1	48
31	A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia vera. British Journal of Haematology, 2014, 167, 541-546.	2.5	47
32	Prognostic impact of bone marrow fibrosis in primary myelofibrosis. A study of the AGIMM group on 490 patients. American Journal of Hematology, 2016, 91, 918-922.	4.1	47
33	The effect of arterial hypertension on thrombosis in lowâ€risk polycythemia vera. American Journal of Hematology, 2017, 92, E5-E6.	4.1	45
34	Cerebral vein thrombosis in patients with <scp>P</scp> hiladelphiaâ€negative myeloproliferative neoplasms An <scp>E</scp> uropean <scp>L</scp> eukemia <scp>N</scp> et study. American Journal of Hematology, 2014, 89, E200-5.	4.1	42
35	Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica, 2010, 95, 1435-1438.	3.5	41
36	JAK2V617F complete molecular remission in polycythemia vera/essential thrombocythemia patients treated with ruxolitinib. Blood, 2015, 125, 3352-3353.	1.4	41

#	Article	IF	CITATIONS
37	Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis. Cancer Research, 2015, 75, 4753-4765.	0.9	41
38	Safety and efficacy of ruxolitinib in splanchnic vein thrombosis associated with myeloproliferative neoplasms. American Journal of Hematology, 2017, 92, 187-195.	4.1	41
39	Increased risk of recurrent thrombosis in patients with essential thrombocythemia carrying the homozygous JAK2 V617F mutation. Annals of Hematology, 2010, 89, 141-146.	1.8	39
40	JAK2V617F mutational status and allele burden have little influence on clinical phenotype and prognosis in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis. Haematologica, 2009, 94, 144-146.	3.5	35
41	Concomitant occurrence of BCR-ABL and JAK2V617F mutation. Blood, 2011, 118, 3445-3446.	1.4	32
42	High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis. PLoS ONE, 2010, 5, e15277.	2.5	30
43	Infrequent occurrence of mutations in the PH domain of LNK in patients with JAK2 mutation-negative 'idiopathic' erythrocytosis. Haematologica, 2013, 98, e101-e102.	3.5	24
44	Frequency and clinical correlates of JAK2 46/1 (GGCC) haplotype in primary myelofibrosis. Leukemia, 2010, 24, 1533-1537.	7.2	22
45	Patterns of presentation and thrombosis outcome in patients with polycythemia vera strictly defined by WHOâ€criteria and stratified by calendar period of diagnosis. American Journal of Hematology, 2015, 90, 434-437.	4.1	19
46	Mesenchymal stem cells from JAK2V617F mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leukemia Research, 2008, 32, 516-517.	0.8	17
47	Risk of second cancers in chronic myeloproliferative neoplasms. Blood, 2012, 119, 3861-3862.	1.4	14
48	Abnormal expression patterns of <i>WT1-as, MEG3</i> and <i>ANRIL</i> long non-coding RNAs in CD34+ cells from patients with primary myelofibrosis and their clinical correlations. Leukemia and Lymphoma, 2015, 56, 492-496.	1.3	14
49	Influence of the Jak2V617F Mutational Load at Diagnosis on Major Clinical Aspects in Patients with Polycythemia Vera Blood, 2006, 108, 5-5.	1.4	14
50	Cerebral Vein Thrombosis In Patients With Myeloproliferative Neoplasms. Blood, 2013, 122, 4068-4068.	1.4	10
51	Complex karyotype in a polycythemia vera patient with a novel SETD1B/GTF2H3 fusion gene. American Journal of Hematology, 2014, 89, 438-442.	4.1	9
52	Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis. Haematologica, 2015, 100, 757-767.	3.5	9
53	The Italian Mastocytosis Registry: 6-year experience from a hospital-based registry. Future Oncology, 2018, 14, 2713-2723.	2.4	9
54	Complex Patterns of Chromosome 11 Aberrations in Myeloid Malignancies Target CBL, MLL, DDB1 and LMO2. PLoS ONE, 2013, 8, e77819.	2.5	9

#	Article	IF	CITATIONS
55	The mTOR Inhibitor, RAD001, Inhibits the Growth of Cells From Patients with Myeloproliferative Neoplasms Blood, 2009, 114, 2914-2914.	1.4	8
56	Survival and Prognosis Among 1,263 Patients with Polycythemia Vera: An International Study. Blood, 2011, 118, 277-277.	1.4	7
57	Inhibitors of PI3K/Akt and/or mTOR Inhibit the Growth of Cells of Myeloproliferative Neoplasms and Synergize with JAK2 Inhibitor and Interferon,. Blood, 2011, 118, 3835-3835.	1.4	7
58	Treatment options for essential thrombocythemia and polycythemia vera. Expert Review of Hematology, 2009, 2, 41-55.	2.2	6
59	The myeloproliferative neoplasm-associated JAK2 46/1 haplotype is not overrepresented in chronic myelogenous leukemia. Annals of Hematology, 2011, 90, 365-366.	1.8	6
60	Validation of the Mayo alliance prognostic system for mastocytosis. Blood Cancer Journal, 2019, 9, 18.	6.2	6
61	Long-Term Efficacy and Safety Results From a Phase II Study of Ruxolitinib in Patients with Polycythemia Vera. Blood, 2012, 120, 804-804.	1.4	6
62	Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis. Genomics Data, 2015, 5, 1-2.	1.3	5
63	Myelodysplasia as assessed by multiparameter flow cytometry refines prognostic stratification provided by genotypic risk in systemic mastocytosis. American Journal of Hematology, 2019, 94, 845-852.	4.1	5
64	<i>BCR-ABL1</i> -negative chronic myeloid neoplasms: an update on management techniques. Future Oncology, 2012, 8, 575-593.	2.4	4
65	A Phase 2 Study Of Ruxolitinib In Patients With Splanchnic Vein Thrombosis Associated With Myeloproliferative Neoplasm. Preliminary Results. Blood, 2013, 122, 1583-1583.	1.4	4
66	The burden of symptoms in myelofibrosis: From patient-reported outcomes to health economics. Leukemia Research, 2013, 37, 855-856.	0.8	3
67	Imaging studies in extramedullary hematopoiesis of the spleen. Annals of Hematology, 2014, 93, 347-349.	1.8	2
68	Impact Of Prognostically Detrimental Mutations (ASXL1, EZH2, SRSF2, IDH1/2) On Outcomes In Patients With Myelofibrosis Treated With Ruxolitinib In COMFORT-II. Blood, 2013, 122, 107-107.	1.4	2
69	Imatinib and cardiac failure in idiopathic hypereosinophilic syndrome. Annals of Hematology, 2010, 89, 745-746.	1.8	1
70	Givinostat for the treatment of polycythemia vera. Expert Opinion on Orphan Drugs, 2014, 2, 841-850.	0.8	1
71	MR Imaging in nonâ€hepatosplenic extramedullary hematopoiesis in primary myelofibrosis. American Journal of Hematology, 2016, 91, 1062-1063.	4.1	1
72	Improving prognostic tools in systemic mastocytosis: Insights from mutations. American Journal of Hematology, 2016, 91, 867-868.	4.1	1

#	Article	IF	CITATIONS
73	Treatment with Ruxolitinib (INCB018424) Induced Changes of Microrna Expression in Granulocytes of Patients with Polycythemia Vera and Essential Thrombocythemia,. Blood, 2011, 118, 3852-3852.	1.4	1
74	Splanchnic Vein Thrombosis Associated With Myeloproliferative Neoplasms. A Study Of The IWG-MRT In 475 Subjects. Blood, 2013, 122, 1582-1582.	1.4	1
75	The Tetraspanin CD9 Is Involved in Primary Myelofibrosis Dysmegakaryopoiesis Through c-Myb Regulation and Stroma Interactions,. Blood, 2011, 118, 3834-3834.	1.4	0
76	Risk Factors for Thrombosis Among 1,545 Patients with Polycythemia Vera: An International Study Blood, 2012, 120, 2849-2849.	1.4	0
77	Masked Polycythemia Vera (mPV): Results Of An International Study. Blood, 2013, 122, 1581-1581.	1.4	0
78	Targeted Cancer Exome Sequencing Discovers Novel Recurrent Mutations In MPN. Blood, 2013, 122, 4099-4099.	1.4	0