Chih-Hao Tsao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048627/publications.pdf Version: 2024-02-01

Снин-Нло Тело

#	Article	IF	CITATIONS
1	<i>In situ</i> formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5796-5806.	10.3	16
2	Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 9846-9855.	8.0	16
3	Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery. Electrochimica Acta, 2020, 361, 137076.	5.2	6
4	Hollow Li2FeSiO4 spheres as cathode and anode material for lithium-ion battery. Journal of Alloys and Compounds, 2019, 797, 1007-1012.	5.5	15
5	Polymer electrolytes based on Poly(VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries. Polymer, 2019, 173, 110-118.	3.8	13
6	Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. Journal of Membrane Science, 2019, 572, 382-389.	8.2	62
7	Vulcanized polymeric cathode material featuring a polyaniline skeleton for high-rate rechargeability and long-cycle stability lithium-sulfur batteries. Electrochimica Acta, 2018, 276, 111-117.	5.2	33
8	Fluorinated Copolymer Functionalized with Ethylene Oxide as Novel Water-Borne Binder for a High-Power Lithium Ion Battery: Synthesis, Mechanism, and Application. ACS Applied Energy Materials, 2018, 1, 3999-4008.	5.1	10
9	Synthesis and characterization of polymer electrolytes based on crossâ€linked phenoxyâ€containing polyphosphazenes. Journal of Polymer Science Part A, 2016, 54, 352-358.	2.3	24
10	Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery. Electrochimica Acta, 2016, 196, 41-47.	5.2	27
11	Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode. ACS Applied Materials & Interfaces, 2016, 8, 15216-15224.	8.0	51
12	A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. Journal of Membrane Science, 2016, 499, 462-469.	8.2	115
13	Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. Journal of Membrane Science, 2015, 489, 36-42.	8.2	57
14	High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2014, 6, 3156-3162.	8.0	132