Guido Fellet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048293/publications.pdf Version: 2024-02-01

CHIDO FELLET

3.7

4

#	Article	IF	CITATIONS
1	Changes in Physicochemical Properties of Biochar after Addition to Soil. Agriculture (Switzerland), 2022, 12, 320.	3.1	8
2	Single and Repeated Applications of Cerium Oxide Nanoparticles Differently Affect the Growth and Biomass Accumulation of Silene flos-cuculi L. (Caryophyllaceae). Nanomaterials, 2021, 11, 229.	4.1	7
3	Influence of Cerium Oxide Nanoparticles on Two Terrestrial Wild Plant Species. Plants, 2021, 10, 335.	3.5	7
4	Calcium Phosphate Particles Coated with Humic Substances: A Potential Plant Biostimulant from Circular Economy. Molecules, 2021, 26, 2810.	3.8	12
5	Tools for Nano-Enabled Agriculture: Fertilizers Based on Calcium Phosphate, Silicon, and Chitosan Nanostructures. Agronomy, 2021, 11, 1239.	3.0	48
6	Nanotechnology support the next agricultural revolution: Perspectives to enhancement of nutrient use efficiency. Advances in Agronomy, 2020, 161, 27-116.	5.2	23
7	Germination and Early Development of Three Spontaneous Plant Species Exposed to Nanoceria (nCeO2) with Different Concentrations and Particle Sizes. Nanomaterials, 2020, 10, 2534.	4.1	14
8	Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles. International Journal of Environmental Research and Public Health, 2016, 13, 332.	2.6	60
9	Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels. International Journal of Environmental Research and Public Health, 2016, 13, 577.	2.6	52
10	PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmospheric Pollution Research, 2016, 7, 915-924.	3.8	34
11	Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the Total Environment, 2014, 468-469, 598-608.	8.0	228
12	Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 2013, 454-455, 598-603.	8.0	220
13	Gentle remediation at the former "Pertusola Sud―zinc smelter: Evaluation of native species for phytoremediation purposes. Ecological Engineering, 2013, 53, 343-353.	3.6	64
14	Metallophytes and thallium hyperaccumulation at the former Raibl lead/zinc mining site (Julian Alps,) Tj ETQqO O	0 rgBT /O	verlock 10 Tf
15	Advances in agronomic management of phytoremediation: methods and results from a 10-year study of metal-polluted soils. Italian Journal of Agronomy, 2012, 7, 42.	1.0	15
16	Agronomy towards the Green Economy. Optimization of metal phytoextraction. Italian Journal of Agronomy, 2011, 6, 30.	1.0	6
17	Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 2011, 83, 1262-1267.	8.2	395

NiO(s) (bunsenite) is not available to Alyssum species. Plant and Soil, 2009, 319, 219-223.

#	Article	IF	CITATIONS
19	Using Chelator-Buffered Nutrient Solutions to Limit Ni Phytoavailability to the Ni-Hyperaccumulator <i>Alyssum murale</i> . Northeastern Naturalist, 2009, 16, 215-222.	0.3	9