Hossein Roghani-Mamaqani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/804819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano, 2020, 14, 14417-14492.	7.3	314
2	Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomaterialia, 2019, 92, 1-18.	4.1	255
3	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179
4	Rewritable Anticounterfeiting Polymer Inks Based on Functionalized Stimuli-Responsive Latex Particles Containing Spiropyran Photoswitches: Reversible Photopatterning and Security Marking. ACS Applied Materials & Interfaces, 2018, 10, 39279-39292.	4.0	141
5	The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polymer Chemistry, 2019, 10, 5686-5720.	1.9	141
6	Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Advances, 2014, 4, 31428-31442.	1.7	112
7	A structural study on ethylenediamine- and poly(amidoamine)-functionalized graphene oxide: simultaneous reduction, functionalization, and formation of 3D structure. RSC Advances, 2015, 5, 71835-71843.	1.7	111
8	Synthesis of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer, 2015, 65, 143-153.	1.8	107
9	In Situ Controlled Radical Polymerization: AÂReview on Synthesis of Well-defined Nanocomposites. Polymer Reviews, 2012, 52, 142-188.	5.3	106
10	Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. Materials Science and Engineering C, 2020, 109, 110524.	3.8	77
11	Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning. Journal of Materials Chemistry C, 2020, 8, 5476-5493.	2.7	76
12	A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups. Applied Surface Science, 2016, 360, 373-382.	3.1	72
13	Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin. Applied Surface Science, 2018, 428, 1061-1069.	3.1	72
14	Light- and temperature-responsive micellar carriers prepared by spiropyran-initiated atom transfer polymerization: Investigation of photochromism kinetics, responsivities, and controlled release of doxorubicin. Polymer, 2020, 187, 122046.	1.8	72
15	Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: Doxorubicin loading and release behavior. Polymer, 2017, 117, 287-294.	1.8	68
16	Grafting poly (amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. Polymer, 2017, 126, 152-161.	1.8	67
17	Functionalization of carbon nanotubes by combination of controlled radical polymerization and "grafting to―method. Advances in Colloid and Interface Science, 2020, 278, 102126.	7.0	67
18	Polystyrene-grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Advances, 2014, 4, 24439-24452.	1.7	66

#	Article	IF	CITATIONS
19	Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: High carbon yields by resin modification and its incorporation into aerogel network. Polymer Degradation and Stability, 2016, 124, 1-14.	2.7	66
20	Preparation of organic-inorganic hybrid nanocomposites from chemically modified epoxy and novolac resins and silica-attached carbon nanotubes by sol-gel process: Investigation of thermal degradation and stability. Progress in Organic Coatings, 2018, 117, 154-165.	1.9	64
21	Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid and Polymer Science, 2014, 292, 2971-2981.	1.0	62
22	Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose, 2017, 24, 2241-2254.	2.4	62
23	Light-Induced Aggregation and Disaggregation of Stimuli-Responsive Latex Particles Depending on Spiropyran Concentration: Kinetics of Photochromism and Investigation of Reversible Photopatterning. Langmuir, 2018, 34, 13910-13923.	1.6	62
24	Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions. Polymer, 2019, 182, 121830.	1.8	61
25	Hybrid and hollow Poly(N,N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer, 2019, 180, 121716.	1.8	58
26	Temperature-Responsive Poly(<i>N</i> -Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. Langmuir, 2020, 36, 2683-2694.	1.6	56
27	Polymer grafting on graphene layers by controlled radical polymerization. Advances in Colloid and Interface Science, 2019, 273, 102021.	7.0	54
28	Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents. Carbohydrate Polymers, 2020, 230, 115603.	5.1	53
29	Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2017, 155, 257-265.	2.5	52
30	In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. Journal of Polymer Research, 2014, 21, 1.	1.2	50
31	Edgeâ€functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polymer International, 2014, 63, 1912-1923.	1.6	50
32	Organic–inorganic nanohybrids of novolac phenolic resin and carbon nanotube: High carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Microporous and Mesoporous Materials, 2016, 224, 58-67.	2.2	50
33	Preparation of tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via atom transfer radical polymerization. AICHE Journal, 2011, 57, 1873-1881.	1.8	49
34	Matrixâ€grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: A kinetic study. International Journal of Chemical Kinetics, 2012, 44, 555-569.	1.0	49
35	Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities. RSC Advances, 2015, 5, 53357-53368.	1.7	49
36	Grafting of poly(acrylic acid) onto poly(amidoamine)-functionalized graphene oxide via surface-mediated reversible addition-fragmentation chain transfer polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 302-309.	1.8	48

#	Article	IF	CITATIONS
37	Properties of PMMA/Carbon nanotubes nanocomposites prepared by "grafting through―method. Polymer Composites, 2012, 33, 215-224.	2.3	47
38	Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydrate Polymers, 2019, 225, 115247.	5.1	47
39	Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polymer Composites, 2010, 31, 1829-1837.	2.3	46
40	A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. Journal of Polymer Research, 2012, 19, 1.	1.2	45
41	In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: Grafting from hydroxyl groups. Polymer Composites, 2014, 35, 386-395.	2.3	45
42	Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid and Polymer Science, 2015, 293, 735-750.	1.0	45
43	Effect of surface chemistry and content of nanocrystalline cellulose on removal of methylene blue from wastewater by poly(acrylic acid)/nanocrystalline cellulose nanocomposite hydrogels. Cellulose, 2019, 26, 5603-5619.	2.4	45
44	"Grafting through―approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. Journal of Sol-Gel Science and Technology, 2013, 66, 337-344.	1.1	43
45	Synthesis and investigation of dual pH―and temperatureâ€responsive behaviour of poly[2â€(dimethylamino)ethyl methacrylate]â€grafted gold nanoparticles. Applied Organometallic Chemistry, 2017, 31, e3702.	1.7	43
46	Modification of graphene with silica nanoparticles for use in hybrid network formation from epoxy, novolac, and epoxidized novolac resins by sol-gel method: Investigation of thermal properties. EXPRESS Polymer Letters, 2018, 12, 187-202.	1.1	43
47	Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 2020, 245, 116507.	5.1	43
48	Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly(2-(dimethylamino)ethyl methacrylate). International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 455-461.	1.8	42
49	Synthesis of dual thermo―and pHâ€sensitive poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€acrylic) Tj ETQq polymerization. Journal of Biomedical Materials Research - Part A, 2018, 106, 231-243.	1 1 0.784 2.1	314 rgBT /0 42
50	A review on synthesis, photophysical properties, and applications of dendrimers with perylene core. European Polymer Journal, 2020, 137, 109933.	2.6	41
51	Preparation of nanoclayâ€dispersed polystyrene nanofibers via atom transfer radical polymerization and electrospinning. Journal of Applied Polymer Science, 2011, 120, 1431-1438.	1.3	40
52	Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. Journal of Applied Polymer Science, 2014, 131, .	1.3	40
53	Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: Heterogeneities in chains and graft densities. Polymer Engineering and Science, 2015, 55, 1720-1732.	1.5	40
54	Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid and Polymer Science, 2015, 293, 3623-3631.	1.0	40

#	Article	IF	CITATIONS
55	Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iranian Polymer Journal (English Edition), 2015, 24, 51-62.	1.3	40
56	Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. Journal of Colloid and Interface Science, 2020, 580, 192-210.	5.0	40
57	Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chemical Engineering Journal, 2011, 174, 368-375.	6.6	39
58	Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. Journal of Polymer Research, 2012, 19, 1.	1.2	39
59	Evaluation of the confinement effect of nanoclay on the kinetics of styrene atom transfer radical polymerization. Journal of Applied Polymer Science, 2012, 123, 409-417.	1.3	39
60	Synthesis of clayâ€dispersed poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 2012, 124, 2278-2286.	1.3	39
61	Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: Bioconjugation with folic acid and doxorubicin release kinetics. Applied Organometallic Chemistry, 2017, 31, e3789.	1.7	39
62	Grafting of silica nanoparticles at the surface of graphene for application in novolac-type phenolic resin hybrid composites. Materials Chemistry and Physics, 2018, 216, 468-475.	2.0	39
63	Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. Journal of Sol-Gel Science and Technology, 2016, 80, 362-377.	1.1	38
64	Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids and Surfaces B: Biointerfaces, 2018, 170, 85-91.	2.5	37
65	Encapsulation of organomodified montmorillonite with PMMA via in situ SR&NI ATRP in miniemulsion. Journal of Polymer Research, 2012, 19, 1.	1.2	36
66	Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. Journal of Materials Science, 2016, 51, 9057-9073.	1.7	36
67	Effect of grafting ratio of poly(propylene imine) dendrimer onto gold nanoparticles on the properties of colloidal hybrids, their DOX loading and release behavior and cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2019, 178, 500-507.	2.5	36
68	Thermophysical behaviour of matrix-grafted graphene/poly(ethylene tetrasulphide) nanocomposites. RSC Advances, 2015, 5, 100369-100377.	1.7	35
69	Fabricating cauliflower-like and dumbbell-like Janus particles: Loading and simultaneous release of DOX and ibuprofen. Colloids and Surfaces B: Biointerfaces, 2019, 173, 155-163.	2.5	35
70	A review on synthesis and applications of dendrimers. Journal of the Iranian Chemical Society, 2021, 18, 503-517.	1.2	35
71	Synthesis and characterization of poly(styreneâ€ <i>co</i> â€butyl acrylate)/clay nanocomposite latexes in miniemulsion by AGET ATRP. Polymer Composites, 2011, 32, 967-975.	2.3	34
72	Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Journal of the Iranian Chemical Society, 2012, 9, 877-887.	1.2	34

#	Article	IF	CITATIONS
73	Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. Journal of Polymer Research, 2012, 19, 1.	1.2	34
74	Light-induced spherical to dumbbell-like morphology transition of coumarin-functionalized latex nanoparticles by a [2ï€ + 2ï€] cycloaddition reaction: a fast and facile strategy to anisotropic geometry. Polymer Chemistry, 2020, 11, 2053-2069.	1.9	34
75	Synthesis and characterization of exfoliated poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polymer Composites, 2011, 32, 1979-1987.	2.3	33
76	Mechanical properties, crystallinity, and self-nucleation of carbon nanotube-polyurethane nanocomposites. Polymer Testing, 2019, 79, 106011.	2.3	32
77	Perylene-3,4,9,10-tetracarboxylic diimide and its derivatives: Synthesis, properties and bioapplications. Dyes and Pigments, 2020, 180, 108488.	2.0	32
78	A comprehensive Monte Carlo simulation of styrene atom transfer radical polymerization. Chinese Journal of Polymer Science (English Edition), 2010, 28, 483-497.	2.0	31
79	Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. Journal of Molecular Liquids, 2020, 319, 114138.	2.3	31
80	Polystyrene-attached graphene nanolayers by reversible addition-fragmentation chain transfer polymerization: a grafting from epoxy groups with various densities. Journal of Polymer Research, 2016, 23, 1.	1.2	30
81	Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids and Surfaces B: Biointerfaces, 2018, 166, 144-151.	2.5	30
82	Effect of surface modification with various thiol compounds on colloidal stability of gold nanoparticles. Applied Organometallic Chemistry, 2018, 32, e4079.	1.7	29
83	Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers. Journal of Colloid and Interface Science, 2021, 593, 67-78.	5.0	29
84	Nanoclayâ€encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polymer Composites, 2012, 33, 990-998.	2.3	28
85	In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: Kinetic study and investigation of thermal properties. Journal of Polymer Research, 2013, 20, 1.	1.2	28
86	Evaluation of <i>in vitro</i> cytotoxicity and properties of polydimethylsiloxaneâ€based polyurethane/crystalline nanocellulose bionanocomposites. Journal of Biomedical Materials Research - Part A, 2019, 107, 1771-1778.	2.1	28
87	Preparation of carbon nanotube and polyurethaneâ€imide hybrid composites by sol–gel reaction. Polymer Composites, 2019, 40, E1903-E1909.	2.3	28
88	Study of kinetics and properties of polystyrene/silica nanocomposites prepared via in situ free radical and reversible addition-fragmentation chain transfer polymerizations. Scientia Iranica, 2012, 19, 2004-2011.	0.3	27
89	Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1027-1037.	2.0	27
90	Preparation of polyurethane composites reinforced with halloysite and carbon nanotubes. Polymer Composites, 2021, 42, 450-461.	2.3	27

#	Article	IF	CITATIONS
91	Dual-mode security anticounterfeiting and encoding by electrospinning of highly photoluminescent spiropyran nanofibers. Journal of Materials Chemistry Ć, 2021, 9, 9571-9583.	2.7	27
92	Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coordination Chemistry Reviews, 2022, 455, 214368.	9.5	27
93	Nanoconfinement effect of graphene on thermophysical properties and crystallinity of matrix-grafted graphene/crosslinked polysulfide polymer nanocomposites. Diamond and Related Materials, 2018, 83, 177-183.	1.8	26
94	Morphology evolution of functionalized styrene and methyl methacrylate copolymer latex nanoparticles by one-step emulsifier-free emulsion polymerization. European Polymer Journal, 2020, 133, 109790.	2.6	26
95	Amine-modified graphene oxide as co-curing agent of epoxidized polysulfide prepolymer: Thermophysical and mechanical properties of nanocomposites. Diamond and Related Materials, 2018, 86, 109-116.	1.8	25
96	Fabrication of microphase-separated polyurethane/cellulose nanocrystal nanocomposites with irregular mechanical and shape memory properties. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	25
97	Polysulfide Polymers: Synthesis, Blending, Nanocomposites, and Applications. Polymer Reviews, 2019, 59, 124-148.	5.3	25
98	UV-stabilized self-assembled amphiphilic triblock terpolymers supramolecular structures with low cytotoxicity as doxorubicin carriers. Materials Science and Engineering C, 2020, 110, 110745.	3.8	24
99	Modification of cellulose nanocrystal with dual temperature- and CO2-responsive block copolymers for ion adsorption applications. Journal of Molecular Liquids, 2020, 310, 113234.	2.3	24
100	Influence of aspartic acid functionalized graphene oxide presence in polyvinylchloride mixed matrix membranes on chromium removal from aqueous feed containing humic acid. Journal of Environmental Chemical Engineering, 2021, 9, 104685.	3.3	24
101	Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polymer Composites, 2013, 34, 1648-1654.	2.3	23
102	Halloysiteâ€reinforced thermoplastic polyurethane nanocomposites: Physicoâ€rnechanical, rheological, and thermal investigations. Polymer Composites, 2020, 41, 3260-3270.	2.3	23
103	Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl) Tj ETQq1 1 0.7843 2020, 27, 28091-28103.	814 rgBT / 2.7	Overlock 10 23
104	Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. European Polymer Journal, 2020, 134, 109804.	2.6	23
105	Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Advances in Colloid and Interface Science, 2021, 294, 102471.	7.0	23
106	A kinetics study on the <i>in situ</i> reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Designed Monomers and Polymers, 2014, 17, 245-254.	0.7	22
107	Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. Journal of Polymer Research, 2015, 22, 1.	1.2	22
108	Temperature-induced self-assembly of amphiphilic triblock terpolymers to low cytotoxic spherical and cubic structures as curcumin carriers. Journal of Molecular Liquids, 2020, 313, 113504.	2.3	22

#	Article	IF	CITATIONS
109	Investigation of thermophysical and adhesion/mechanical properties of amine-cured epoxidized polysulfide polymer/epoxidized graphene nanocomposites. Progress in Organic Coatings, 2019, 131, 211-218.	1.9	21
110	Effect of Loading and Surface Modification of Nanoparticles on the Properties of PMMA/Silica Nanocomposites Prepared via In-Situ Free Radical Polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 336-344.	1.8	20
111	Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chimica Acta, 2018, 476, 83-92.	1.2	20
112	Controlled release of anti-cancer drug from the shell and hollow cavities of poly(N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation chain transfer polymerization. European Polymer Journal, 2020, 135, 109877.	2.6	20
113	Cellulose nanocrystal-grafted multi-responsive copolymers containing cleavable o-nitrobenzyl ester units for stimuli-stabilization of oil-in-water droplets. Chemical Engineering Journal, 2021, 417, 128005.	6.6	20
114	Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. Polymer, 2020, 205, 122859.	1.8	19
115	Carbon dioxide-switched removal of nitrate ions from water by cellulose nanocrystal-grafted and free multi-responsive block copolymers. Journal of Molecular Liquids, 2020, 318, 114301.	2.3	19
116	Stimuli-Responsive Covalent Adaptable Hydrogels Based on Homolytic Bond Dissociation and Chain Transfer Reactions. Chemistry of Materials, 2022, 34, 468-498.	3.2	19
117	Poly(poly[ethylene glycol] methyl ether methacrylate)/graphene oxide nanocomposite gel polymer electrolytes prepared by controlled and conventional radical polymerizations for lithium ion batteries. International Journal of Energy Research, 2022, 46, 9114-9127.	2.2	19
118	Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. Journal of Polymer Engineering, 2012, 32, .	0.6	18
119	EFFECT OF CARBON NANOTUBES ON THE KINETICS OF <i>IN SITU</i> POLYMERIZATION OF METHYL METHACRYLATE. Nano, 2012, 07, 1250003.	0.5	18
120	Effect of MCM-41 nanoparticles on ARGET ATRP of styrene: Investigating thermal properties. Journal of Composite Materials, 2015, 49, 1525-1535.	1.2	18
121	Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol–gel method. Journal of Thermal Analysis and Calorimetry, 2018, 132, 513-524.	2.0	18
122	Preparation of photolabile nanoparticles by coumarin-based crosslinker for drug delivery under light irradiation. Journal of Physics and Chemistry of Solids, 2021, 154, 110102.	1.9	18
123	Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polymer Chemistry, 2022, 13, 161-192.	1.9	18
124	Effect of surface chemistry of graphene and its content on the properties of ethylene dichloride―and disodium tetrasulfideâ€based polysulfide polymer nanocomposites. Polymer Composites, 2017, 38, E515.	2.3	17
125	Preparation of Furfuryl Alcoholâ€Functionalized Carbon Nanotube and Epoxidized Novolac Resin Composites with High Char Yield. Polymer Composites, 2018, 39, E1231.	2.3	17
126	Preparation of hybrid composites based on epoxy, novolac, and epoxidized novolac resins and silica nanoparticles with high char residue by solâ€gel method. Polymer Composites, 2018, 39, E2316.	2.3	17

#	Article	IF	CITATIONS
127	"Grafting to―approach for surface modification of AuNPs with RAFT-mediated synthesized smart polymers: Stimuli-responsive behaviors of hybrid nanoparticles. Journal of Physics and Chemistry of Solids, 2018, 123, 183-190.	1.9	17
128	Multifunctional curing component for epoxidized novolac resin by grafting poly (amidoamine) on carbon nanotubes using a divergent method. Polymers for Advanced Technologies, 2018, 29, 2216-2223.	1.6	17
129	Incorporation of silica nanoparticles and polyurethane into hybrid composites for increase of char residue. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3311-3319.	2.0	17
130	Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydrate Polymers, 2022, 294, 119768.	5.1	17
131	A simulation of kinetics and chain length distribution of styrene FRP and ATRP: Chainâ€lengthâ€dependent termination. Advances in Polymer Technology, 2011, 30, 257-268.	0.8	16
132	Synthesis of well-defined clay encapsulated poly(styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. Journal of Polymer Engineering, 2012, 32, .	0.6	16
133	Effect of Nanoclay on Styrene and Butyl Acrylate AGET ATRP in Miniemulsion: Study of Nucleation Type, Kinetics, and Polymerization Control. International Journal of Chemical Kinetics, 2013, 45, 221-235.	1.0	16
134	Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers. Journal of Polymer Research, 2017, 24, 1.	1.2	16
135	Preparation of epoxidized novolac resin nanocomposites: Physical and chemical incorporation of modified graphene oxide layers for improvement of thermal stability. Polymer Testing, 2018, 68, 467-474.	2.3	16
136	Chemical incorporation of epoxy-modified graphene oxide into epoxy/novolac matrix for the improvement of thermal characteristics. Carbon Letters, 2020, 30, 13-22.	3.3	16
137	A comparative study on solubility improvement of tetracycline and dexamethasone by poly(propylene) Tj ETQq1 1 Biomedical Materials Research - Part A, 2020, 108, 485-495.	0.784314 2.1	4 rgBT /Ove 16
138	Effect of Aliphatic and Aromatic Chain Extenders on Thermal Stability of Graphene Oxide/Polyurethane Hybrid Composites Prepared by Solâ€Gel Method. ChemistrySelect, 2020, 5, 962-967.	0.7	16
139	Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles. Materials Research Bulletin, 2014, 59, 241-248.	2.7	14
140	Preparation of polyurethane-acrylate and silica nanoparticle hybrid composites by a free radical network formation method. Bulletin of Materials Science, 2019, 42, 1.	0.8	14
141	Coumarin-Containing Block Copolymers as Carbon Dioxide Chemosensors Based on a Fluorescence Quenching Mechanism. ACS Applied Polymer Materials, 2022, 4, 1816-1825.	2.0	14
142	Semi-interpenetrated polymer networks based on modified cellulose and starch as gel polymer electrolytes for high performance lithium ion batteries. Cellulose, 2022, 29, 3423-3437.	2.4	14
143	Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers. Journal of Dispersion Science and Technology, 2018, 39, 1730-1741.	1.3	13
144	In Situ Dendrimer-Crosslinked Gel Polymer Electrolytes for Lithium-Ion Batteries with High Ionic Conductivity and Excellent Electrochemical Performance. ACS Applied Polymer Materials, 2022, 4, 4154-4165.	2.0	13

#	Article	IF	CITATIONS
145	Well-defined nanofiberous polystyrene nanocomposites with twofold chains by ATRP. Polymer Science - Series B, 2012, 54, 153-160.	0.3	12
146	Interparticle cycloaddition reactions for morphology transition of coumarin-functionalized stimuli-responsive polymer nanoparticles prepared by surfactant-free dispersion polymerization. Polymer, 2021, 228, 123899.	1.8	12
147	Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent. Solid State Communications, 2021, 334-335, 114364.	0.9	12
148	Synthesis, photocrosslinking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. European Polymer Journal, 2021, 158, 110686.	2.6	12
149	Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Scientific Reports, 2022, 12, 1079.	1.6	12
150	Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization. Journal of Polymer Engineering, 2012, 32, 235-243.	0.6	11
151	Radical coupling of maleic anhydride onto graphite to fabricate oxidized graphene nanolayers. Bulletin of Materials Science, 2016, 39, 229-234.	0.8	11
152	Grafting polystyrene with various graft densities through epoxy groups of graphene nanolayers via atom transfer radical polymerization. Polymer Composites, 2017, 38, 2450-2458.	2.3	11
153	Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	11
154	Simulation of styrene free radical polymerization over bi-functional initiators using Monte Carlo simulation method and comparison with mono-functional initiators. Polymer Science - Series B, 2010, 52, 184-192.	0.3	10
155	An exhaustive study of chain-length-dependent and diffusion-controlled free radical and atom-transfer radical polymerization of styrene. Journal of Polymer Research, 2011, 18, 1539-1555.	1.2	10
156	Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111008.	2.5	10
157	Polydimethylsiloxaneâ€based Polyurethane/cellulose Nanocrystal Nanocomposites: From Structural Properties Toward Cytotoxicity. Silicon, 2022, 14, 1695-1703.	1.8	10
158	Smart block copolymers as fluorescence chemosensors of copper ions with high detection limit. Journal of Molecular Liquids, 2022, 345, 117786.	2.3	10
159	Janus-type dendrimers: synthesis, properties, and applications. Journal of Molecular Liquids, 2022, 347, 118396.	2.3	10
160	Rewritable acidochromic papers based on oxazolidine for anticounterfeiting and photosensing of polarity and pH of aqueous media. Scientific Reports, 2022, 12, .	1.6	10
161	INTRODUCTION OF A DOUBLE BOND CONTAINING MODIFIER ON THE SURFACE OF MCM-41 NANOPARTICLES: APPLICATION FOR SR&NI ATRP OF STYRENE. Nano, 2014, 09, 1450023.	0.5	9
162	Spherical mesoporous silica nanoparticles/tailor-made polystyrene nanocomposites by in situ reverse atom transfer radical polymerization. Polymer Science - Series B, 2014, 56, 909-918.	0.3	9

#	Article	IF	CITATIONS
163	Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery. Journal of Drug Delivery Science and Technology, 2021, 64, 102626.	1.4	9
164	Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. Journal of Molecular Liquids, 2021, 335, 116247.	2.3	9
165	Stimuli-responsive block copolymers as pH chemosensors by fluorescence emission intensification mechanism. European Polymer Journal, 2022, 162, 110928.	2.6	9
166	INVESTIGATING THE EFFECT OF MCM-41 NANOPARTICLES ON THE KINETICS OF ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE. Nano, 2013, 08, 1350018.	0.5	8
167	Hyperbranched Poly(amidoamine)â€Grafted Graphene Oxide as a Multifunctional Curing Agent for Epoxyâ€Terminated Polyurethane Composites. ChemistrySelect, 2021, 6, 2692-2699.	0.7	8
168	Effect of chain extender length and molecular architecture on phase separation and rheological properties of ether-based polyurethanes. Polymer Bulletin, 2022, 79, 8653-8668.	1.7	8
169	Incorporation of graphene oxide nanolayers into thermally stable hybrid composites of thermosetting resins by combination of curing and sol–gel reactions. Polymer Bulletin, 2018, 75, 4859-4880.	1.7	7
170	Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. Journal of Molecular Liquids, 2021, 344, 117766.	2.3	7
171	Synthesis and characterization of bis(oxiranylmethyl)sulfanes as new epoxideâ€terminated polysulfide prepolymers and their use in synthesis of new amineâ€cured polysulfide polymers. Advances in Polymer Technology, 2018, 37, 3325-3334.	0.8	6
172	Fabrication of high thermal stable cured novolac/Cloisite 30B nanocomposites by chemical modification of resin structure. Polymers for Advanced Technologies, 2020, 31, 226-232.	1.6	5
173	Modification of carbon nanotube with poly(amidoamine) dendritic structures to prepare a multifunctional hybrid curing component for epoxidized polyurethane and novolac resins. Journal of Polymer Research, 2021, 28, 1.	1.2	5
174	Kinetic study of in situ normal and AGET atom transfer radical copolymerization of <i>n</i> –butyl acrylate and styrene: Effect of nanoclay loading and catalyst concentration. International Journal of Chemical Kinetics, 2012, 44, 789-799.	1.0	4
175	One-step fabrication of low cytotoxic anisotropic poly(2-hydroxyethyl methacrylate-co-methacrylic) Tj ETQq1 1 101332.	0.784314 1.4	rgBT /Overlo 4
176	Poly(amidoamine) dendrimer-grafted carbon nanotubes as a hybrid multifunctional curing agent for epoxy-modified polyurethane. Carbon Letters, 2021, 31, 677.	3.3	4
177	Fabrication of acidâ€labile poly(2â€hydroxyethyl methacrylate) nanoparticles using aldazineâ€based crosslinker as <scp>pH</scp> â€sensitive drug nanocarriers. Polymers for Advanced Technologies, 2021, 32, 3095-3103.	1.6	4
178	Preparation of silica-decorated graphite oxide and epoxy-modified phenolic resin composites. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 348-357.	1.0	4
179	Effect of reduced graphene oxide on mechanical behavior of an epoxy adhesive in glassy and rubbery states. Journal of Composite Materials, 2021, 55, 3839-3848.	1.2	4
180	Synthesis and properties of fluorescent coumarin/perylene-3,4,9,10-tetracarboxylic diimide hybrid as cold dye. Materials Research Bulletin, 2021, 144, 111500.	2.7	4

#	Article	IF	CITATIONS
181	Tuning Microphase Separation, Thermal Characteristics, and Physicoâ€Mechanical Properties of Shape Memory Polyurethanes by Incorporation of Isocyanateâ€Modified Fe 3 O 4 Magnetic Nanoparticles. Macromolecular Materials and Engineering, 0, , 2100637.	1.7	4
182	Preparation of a hyperbranched hybrid curing agent for epoxidized novolac resin. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 793-802.	1.0	3
183	Hybrid composites of epoxidized polyurethane and novolac resins cured by poly(amidoamine) dendrimer-grafted graphene oxide. Polymer Bulletin, 2022, 79, 5975-5990.	1.7	3
184	Effect of poly(amidoamine) dendrimer-grafted silica nanoparticles and different chain extenders on thermal properties of epoxy-modified polyurethane composites. Bulletin of Materials Science, 2021, 44, 1.	0.8	2
185	Multifunctional poly(amidoamine)-functionalized silica nanoparticles for epoxide-functionalized polyurethane and novolac resins crosslinking. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	2
186	Core–shell to Janus morphologies from co-assembly of polyaniline and hydrophobic polymers in aqueous media. Polymer Bulletin, 0, , 1.	1.7	2
187	Synthesis, optical properties, and cell imaging performance of perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)-based poly(amidoamine) (PAMAM) dendrimers. European Polymer Journal, 2022, 170, 111159.	2.6	2
188	One-pot synthesis of organo-silica hybrids with high thermal properties via a simple sol–gel process. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2267-2274.	2.0	1