
Thomas M Braschler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of an elastic porous injectable biomaterial for tissue regeneration and volume retention. Acta Biomaterialia, 2022, 142, 73-84.	8.3	7
2	Pseudomonas aeruginosa rhamnolipid micelles deliver toxic metabolites and antibiotics into Staphylococcus aureus. IScience, 2022, 25, 103669.	4.1	14
3	Adiposeâ€derived stem cell spheroids are superior to singleâ€cell suspensions to improve fat autograft longâ€term survival. Journal of Cellular and Molecular Medicine, 2022, 26, 1421-1433.	3.6	6
4	The Role of Interstitial Fluid Pressure in Cerebral Porous Biomaterial Integration. Brain Sciences, 2022, 12, 417.	2.3	0
5	Neurothreads: Development of supportive carriers for mature dopaminergic neuron differentiation and implantation. Biomaterials, 2021, 270, 120707.	11.4	12
6	Neural priming of adipose-derived stem cells by cell-imprinted substrates*. Biofabrication, 2021, 13, 035009.	7.1	12
7	An Injectable Metaâ€Biomaterial: From Design and Simulation to In Vivo Shaping and Tissue Induction. Advanced Materials, 2021, 33, e2102350.	21.0	15
8	Cryogelâ€based Injectable 3D Microcarrier Coâ€culture for Support of Hematopoietic Progenitor Niches. Current Protocols, 2021, 1, e275.	2.9	4
9	Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials, 2020, 232, 119665.	11.4	28
10	Pore Size Manipulation in 3D Printed Cryogels Enables Selective Cell Seeding. Advanced Materials Technologies, 2018, 3, 1700340.	5.8	26
11	Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomaterialia, 2018, 76, 71-79.	8.3	39
12	On-Chip Flow Cytometry. , 2016, , 2985-2996.		0
13	Composite hydrogel-loaded alumina membranes for nanofluidic molecular filtration. Journal of Membrane Science, 2015, 477, 151-156.	8.2	15
14	Soft nanofluidics governing minority ion exclusion in charged hydrogels. Soft Matter, 2015, 11, 4081-4090.	2.7	7
15	Injectable cryogel-based whole-cell cancer vaccines. Nature Communications, 2015, 6, 7556.	12.8	312
16	A Compressible Scaffold for Minimally Invasive Delivery of Large Intact Neuronal Networks. Advanced Healthcare Materials, 2015, 4, 301-312.	7.6	69
17	Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of Periodontal and Implant Science, 2013, 43, 251.	2.0	96
18	Microdrop Printing of Hydrogel Bioinks into 3D Tissue‣ike Geometries. Advanced Materials, 2012, 24, 391-396.	21.0	231

THOMAS M BRASCHLER

#	Article	IF	CITATIONS
19	Link between Alginate Reaction Front Propagation and General Reaction Diffusion Theory. Analytical Chemistry, 2011, 83, 2234-2242.	6.5	45
20	Tracking and synchronization of the yeast cell cycle using dielectrophoretic opacity. Lab on A Chip, 2011, 11, 1754.	6.0	32
21	A miniaturized continuous dielectrophoretic cell sorter and its applications. Biomicrofluidics, 2010, 4, .	2.4	72
22	A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab on A Chip, 2010, 10, 2216.	6.0	137
23	Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab on A Chip, 2010, 10, 2077.	6.0	64
24	Fluidic microstructuring of alginate hydrogels for the single cell niche. Lab on A Chip, 2010, 10, 2771.	6.0	12
25	Biochip with E. coli bacteria for detection of arsenic in drinking water. Procedia Chemistry, 2009, 1, 1003-1006.	0.7	24
26	Wide channel dielectrophoresis-based particle exchanger with electrophoretic diffusion compensation. Lab on A Chip, 2009, 9, 657.	6.0	11
27	Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sensors and Actuators B: Chemical, 2008, 132, 388-396.	7.8	111
28	Dielectrophoretic sorting on a microfabricated flow cytometer: Label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry, 2008, 73, 123-128.	4.6	40
29	Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab on A Chip, 2008, 8, 267-273.	6.0	58
30	Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Lab on A Chip, 2008, 8, 280-286.	6.0	119
31	Label-free detection of Babesia bovis infected red blood cells using impedance spectroscopy on a microfabricated flow cytometer. Acta Tropica, 2007, 102, 63-68.	2.0	58
32	A simple pneumatic setup for driving microfluidics. Lab on A Chip, 2007, 7, 420-422.	6.0	32
33	Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab on A Chip, 2007, 7, 355-365.	6.0	133
34	A virtual valve for smooth contamination-free flow switching. Lab on A Chip, 2007, 7, 1111.	6.0	9
35	Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab on A Chip, 2006, 6, 1155.	6.0	57
36	Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab on A Chip, 2005, 5, 553.	6.0	84