List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	13.7	3,365
2	CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology, 2002, 12, 1484-1495.	1.8	1,125
3	Gene expression of a gene family in maize based on noncollinear haplotypes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9055-9060.	3.3	248
4	In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 2003, 300, 1566-1569.	6.0	245
5	A New Opaque Variant of Maize by a Single Dominant RNA-Interference-Inducing Transgene. Genetics, 2003, 165, 387-397.	1.2	188
6	High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnology, 2016, 16, 58.	1.7	162
7	Mosaic Organization of Orthologous Sequences in Grass Genomes. Genome Research, 2002, 12, 1549-1555.	2.4	130
8	Genome-Wide Characterization of <i>cis</i> -Acting DNA Targets Reveals the Transcriptional Regulatory Framework of <i>Opaque2</i> in Maize. Plant Cell, 2015, 27, 532-545.	3.1	130
9	Comparative sequence analysis of <i>MONOCULM1</i> -orthologous regions in 14 <i>Oryza</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2071-2076.	3.3	119
10	Sequence, Regulation, and Evolution of the Maize 22-kD α Zein Gene Family. Genome Research, 2001, 11, 1817-1825.	2.4	118
11	Dek35 Encodes a PPR Protein that Affects cis -Splicing of Mitochondrial nad4 Intron 1 andÂSeed Development in Maize. Molecular Plant, 2017, 10, 427-441.	3.9	106
12	OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. Plant Cell, 2018, 30, 375-396.	3.1	103
13	Isolation of High Quality RNA from Cereal Seeds Containing High Levels of Starch. Phytochemical Analysis, 2012, 23, 159-163.	1.2	101
14	<i>Opaque1</i> Encodes a Myosin XI Motor Protein That Is Required for Endoplasmic Reticulum Motility and Protein Body Formation in Maize Endosperm. Plant Cell, 2012, 24, 3447-3462.	3.1	99
15	<i>Retracted: Proline responding1</i> Plays a Critical Role in Regulating General Protein Synthesis and the Cell Cycle in Maize Â. Plant Cell, 2014, 26, 2582-2600.	3.1	99
16	Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresource Technology, 2010, 101, 4508-4512.	4.8	93
17	E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytologist, 2017, 214, 1563-1578.	3.5	85
18	Mitochondrial Function and Maize Kernel Development Requires Dek2, a Pentatricopeptide Repeat Protein Involved in nad1 mRNA Splicing. Genetics, 2017, 205, 239-249.	1.2	82

#	Article	IF	CITATIONS
19	The ZmbZIP22 Transcription Factor Regulates 27-kD Î ³ -Zein Gene Transcription during Maize Endosperm Development. Plant Cell, 2018, 30, 2402-2424.	3.1	65
20	Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiological Research, 2011, 166, 27-35.	2.5	63
21	ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque2. PLoS Genetics, 2016, 12, e1005991.	1.5	62
22	Contiguous Genomic DNA Sequence Comprising the 19-kD Zein Gene Family from Maize. Plant Physiology, 2002, 130, 1626-1635.	2.3	61
23	Overexpression of two cambiumâ€abundant Chinese fir (<i>Cunninghamia lanceolata</i>) αâ€expansin genes <i>ClEXPA1</i> and <i>ClEXPA2</i> affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnology Journal, 2011, 9, 486-502.	4.1	56
24	Editing of Mitochondrial Transcripts <i>nad3</i> and <i>cox2</i> by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics, 2017, 205, 1489-1501.	1.2	56
25	Maize <i>Dek37</i> Encodes a P-type PPR Protein That Affects <i>cis</i> -Splicing of Mitochondrial <i>nad2</i> Intron 1 and Seed Development. Genetics, 2018, 208, 1069-1082.	1.2	55
26	Reductive degradation of chloramphenicol using bioelectrochemical system (BES): A comparative study of abiotic cathode and biocathode. Bioresource Technology, 2013, 143, 699-702.	4.8	53
27	Identification and Characterization of Maize floury4 as a Novel Semidominant Opaque Mutant That Disrupts Protein Body Assembly Â. Plant Physiology, 2014, 165, 582-594.	2.3	52
28	Maize opaque10 Encodes a Cereal-Specific Protein That Is Essential for the Proper Distribution of Zeins in Endosperm Protein Bodies. PLoS Genetics, 2016, 12, e1006270.	1.5	43
29	Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize I±-zein super gene family. Plant Molecular Biology, 2009, 69, 649-659.	2.0	41
30	Maize <i>reas1</i> Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses. Plant Physiology, 2016, 170, 971-988.	2.3	41
31	Maize endosperm development. Journal of Integrative Plant Biology, 2021, 63, 613-627.	4.1	40
32	Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Research, 2004, 32, e189-e189.	6.5	39
33	<i>>Dek42</i> encodes an RNAâ€binding protein that affects alternative preâ€mRNA splicing and maize kernel development. Journal of Integrative Plant Biology, 2019, 61, 728-748.	4.1	38
34	The regulation of zein biosynthesis in maize endosperm. Theoretical and Applied Genetics, 2020, 133, 1443-1453.	1.8	38
35	Maize <i>Dek15</i> Encodes the Cohesin-Loading Complex Subunit SCC4 and Is Essential for Chromosome Segregation and Kernel Development. Plant Cell, 2019, 31, 465-485.	3.1	35
36	Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. Journal of Experimental Botany, 2019, 70, 3795-3808.	2.4	35

#	Article	IF	CITATIONS
37	Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Research, 2011, 21, 1267-1270.	5.7	33
38	Comprehensive proteomic analysis of developing protein bodies in maize (<i>Zea mays</i>) endosperm provides novel insights into its biogenesis. Journal of Experimental Botany, 2016, 67, 6323-6335.	2.4	28
39	A Sequence-Indexed <i>Mutator</i> Insertional Library for Maize Functional Genomics Study. Plant Physiology, 2019, 181, 1404-1414.	2.3	28
40	Maize <i>Dek44</i> Encodes Mitochondrial Ribosomal Protein L9 and Is Required for Seed Development. Plant Physiology, 2019, 180, 2106-2119.	2.3	28
41	Maize kernel development. Molecular Breeding, 2021, 41, 1.	1.0	28
42	Cloning and characterization of two novel chloroplastic glycerol-3-phosphate dehydrogenases from Dunaliella viridis. Plant Molecular Biology, 2009, 71, 193-205.	2.0	25
43	High segregation distortion in maize B73 x teosinte crosses. Genetics and Molecular Research, 2012, 11, 693-706.	0.3	25
44	Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochemical and Biophysical Research Communications, 2006, 340, 95-104.	1.0	24
45	An expression analysis of 57 transcription factors derived from ESTs of developing seeds in Maize (Zea) Tj ETQo	1110,7843 2.8	314.rgBT /Ov
46	The cloning and characterization of two ammonium transporters in the salt-resistant green alga, Dunaliella viridis. Molecular Biology Reports, 2011, 38, 4797-4804.	1.0	24
47	Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochemical and Biophysical Research Communications, 2006, 347, 707-714.	1.0	23
48	A SnRK1- <i>Zm</i> RFWD3-Opaque2 Signaling Axis Regulates Diurnal Nitrogen Accumulation in Maize Seeds. Plant Cell, 2020, 32, 2823-2841.	3.1	22
49	Zea mays Taxilin Protein Negatively Regulates Opaque-2 Transcriptional Activity by Causing a Change in Its Sub-Cellular Distribution. PLoS ONE, 2012, 7, e43822.	1.1	20
50	Divergence in centromere structure distinguishes related genomes in Coix lacryma-jobi and its wild relative. Chromosoma, 2010, 119, 89-98.	1.0	19
51	Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. Gene, 2014, 536, 407-415.	1.0	18
52	Morphology and stability changes of recombinant TMV particles caused by a cysteine residue in the foreign peptide fused to the coat protein. Journal of Virological Methods, 2007, 140, 212-217.	1.0	17
53	The endoglucanase from Bacillus subtilis BEC-1 bears halo-tolerant, acidophilic and dithiothreitol-stimulated enzyme activity. World Journal of Microbiology and Biotechnology, 2011, 27, 2863-2871.	1.7	16
54	Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. Journal of Experimental Botany, 2019, 70, 5173-5187.	2.4	16

#	Article	IF	CITATIONS
55	Maize pentatricopeptide repeat protein DEK53 is required for mitochondrial RNA editing at multiple sites and seed development. Journal of Experimental Botany, 2020, 71, 6246-6261.	2.4	16
56	Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea) Tj ETQq	0 0 0 rgBT / 2.4	Overlock 10 T

57	<i>Dek40</i> Encodes a PBAC4 Protein Required for 20S Proteasome Biogenesis and Seed Development. Plant Physiology, 2019, 180, 2120-2132.	2.3	14
58	<i>ENB1</i> encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. Plant Cell, 2022, 34, 1054-1074.	3.1	13
59	Molecular cloning and characterization of a vacuolar H+-pyrophosphatase from Dunaliella viridis. Molecular Biology Reports, 2011, 38, 3375-3382.	1.0	12
60	<i>shrunken4</i> is a mutant allele of <i>ZmYSL2</i> that affects aleurone development and starch synthesis in maize. Genetics, 2021, 218, .	1.2	12
61	Maize seed storage proteins , 2017, , 175-189.		12
62	The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes. Plant Molecular Biology, 2010, 74, 631-643.	2.0	11
63	Construction of a <i>Coix</i> BAC library and isolation of the 22ÂkDa α-coixin gene cluster. Genome, 2010, 53, 667-674.	0.9	11
64	Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize. Agriculture (Switzerland), 2021, 11, 429.	1.4	11
65	OsFY, a Homolog of AtFY, Encodes a Protein that Can Interact with OsFCA-γ in Rice (Oryza sativa L.). Acta Biochimica Et Biophysica Sinica, 2006, 38, 492-499.	0.9	10
66	Characterization of duplicated Dunaliella viridis SPT1 genes provides insights into early gene divergence after duplication. Gene, 2008, 423, 36-42.	1.0	10
67	An Induced Hypersensitive-Like Response Limits Expression of Foreign Peptides via a Recombinant TMV-Based Vector in a Susceptible Tobacco. PLoS ONE, 2010, 5, e15087.	1.1	10
68	The characterization of two peroxiredoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress. Plant Cell Reports, 2011, 30, 1503-1512.	2.8	9
69	Sequencing and Analysis of a Genomic Fragment Provide an Insight into the Dunaliella viridis Genomic Sequence. Acta Biochimica Et Biophysica Sinica, 2006, 38, 812-820.	0.9	7
70	Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis. Molecular Biology Reports, 2011, 38, 2241-2248.	1.0	7
71	Maize ZmVPP5 is a truncated Vacuole H ⁺ â€PPase that confers hypersensitivity to salt stress. Journal of Integrative Plant Biology, 2016, 58, 518-528.	4.1	7
72	TMV recombinants encoding fused foreign transmembrane domains to the CP subunit caused local necrotic response on susceptible tobacco. Virology, 2006, 348, 253-259.	1.1	6

#	Article	IF	CITATIONS
73	Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization. Biologia (Poland), 2015, 70, 1586-1596.	0.8	6
74	O11 is multi-functional regulator in maize endosperm. Plant Signaling and Behavior, 2018, 13, e1451709.	1.2	6
75	A specific cis-hairpin ribozyme facilitates infection of a TMV-based DNA vector in tobacco protoplasts. Journal of Virological Methods, 2003, 111, 101-109.	1.0	5
76	Characterization of a glutamine synthetase gene DvGS1 from Dunaliella viridis and investigation of the impact on expression of DvGS1 in transgenic Arabidopsis thaliana. Molecular Biology Reports, 2014, 41, 477-487.	1.0	5
77	A Transcriptional Roadmap for Seed Development in Maize. , 2012, , 81-97.		5
78	Accumulation of 22 kDa αâ€zeinâ€mediated nonzein protein in protein body of maize endosperm. New Phytologist, 2022, 233, 265-281.	3.5	5
79	Construction of a BAC library from cucumber (Cucumis sativus L.) and identification of linkage group specific clones. Progress in Natural Science: Materials International, 2008, 18, 143-147.	1.8	4
80	Molecular characterization of a genomic interval with highly uneven recombination distribution on maize chromosome 10 L. Genetica, 2011, 139, 1109-1118.	0.5	4
81	Uncovering kappa-opioid receptor agonist-induced PAK1/2 phosphorylation by quantitative phosphoproteomics. Biochemical and Biophysical Research Communications, 2019, 516, 320-326.	1.0	4
82	An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome. Genetica, 2010, 138, 1261-1270.	0.5	3
83	Expression of the 26S proteasome subunit RPN10 is upregulated by salt stress in Dunaliella viridis. Journal of Plant Physiology, 2010, 167, 1003-1008.	1.6	3
84	Pollen-Specific CRISPR/Cas9 System to Increase Heritable Gene Mutations in Maize. Agriculture (Switzerland), 2021, 11, 751.	1.4	3
85	Cloning and characterization of a flowering time gene fromThellungiella halophila. Acta Biochimica Et Biophysica Sinica, 2008, 40, 747-753.	0.9	2
86	The growth improvement of DvGS2-transgenic Arabidopsis thaliana arises from the higher efficiency of nitrogen and carbon assimilation. Plant Biotechnology Reports, 2015, 9, 187-195.	0.9	2
87	Improved ethanol production in the presence of cadmium ions by a Saccharomyces cerevisiae transformed with a novel cadmium-resistance gene DvCRP1. Environmental Technology (United) Tj ETQq1 1 0.7	′84 3. ⊵4 rgE	3T /Dverlock
88	High-resolution gene profiling of infection process indicates serine metabolism adaptation of Fusarium graminearum in host. Science Bulletin, 2017, 62, 758-760.	4.3	1
89	Establishment of a Bivector Genetic Transformation System in Recalcitrant Maize Inbred Lines. Agriculture (Switzerland), 2021, 11, 663.	1.4	1
90	Characterization of an Ac transposon system based on apt1-m1 (Ac) on the long arm of maize chromosome 9. Genetica, 2012, 140, 337-347.	0.5	0

#	Article	IF	CITATIONS
91	The better growth phenotype of DvGS1-transgenic arabidopsis thaliana is attributed to the improved efficiency of nitrogen assimilation. Archives of Biological Sciences, 2015, 67, 1107-1118.	0.2	0