
Wei-Xin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048066/publications.pdf Version: 2024-02-01

WELVIN THANC

#	Article	IF	CITATIONS
1	Biochemical characterization of a thermophilic exo-arabinanase from the filamentous fungus Rasamsonia emersonii. Journal of Bioscience and Bioengineering, 2022, 133, 316-322.	2.2	2
2	Elimination of the Sugar Transporter GAT1 Increased Xylanase I Production in Trichoderma reesei. Frontiers in Microbiology, 2022, 13, 810066.	3.5	2
3	Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei. MBio, 2022, 13, e0345621.	4.1	11
4	Reformulating the Hydrolytic Enzyme Cocktail of <i>Trichoderma reesei</i> by Combining XYR1 Overexpression and Elimination of Four Major Cellulases to Improve Saccharification of Corn Fiber. Journal of Agricultural and Food Chemistry, 2022, 70, 211-222.	5.2	12
5	Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei. Journal of Microbiology, 2021, 59, 426-434.	2.8	14
6	Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei. PLoS Genetics, 2021, 17, e1009351.	3.5	16
7	Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II. PLoS Genetics, 2020, 16, e1008979.	3.5	18
8	The Putative Methyltransferase TlLAE1 Is Involved in the Regulation of Peptaibols Production in the Biocontrol Fungus Trichoderma longibrachiatum SMF2. Frontiers in Microbiology, 2020, 11, 1267.	3.5	11
9	Enhancing peptaibols production in the biocontrol fungusTrichoderma longibrachiatumSMF2 by elimination of a putative glucose sensor. Biotechnology and Bioengineering, 2019, 116, 3030-3040.	3.3	9
10	<i>Trichoderma reesei</i> XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Molecular Microbiology, 2019, 112, 1145-1162.	2.5	47
11	CLP1, a Novel Plant Homeo Domain Protein, Participates in Regulating Cellulase Gene Expression in the Filamentous Fungus Trichoderma reesei. Frontiers in Microbiology, 2019, 10, 1700.	3.5	13
12	A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Applied Microbiology and Biotechnology, 2019, 103, 4511-4523.	3.6	38
13	Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microbial Cell Factories, 2019, 18, 180.	4.0	10
14	An Extracytoplasmic Function Sigma Factor Controls Cellulose Utilization by Regulating the Expression of an Outer Membrane Protein in <i>Cytophaga hutchinsonii</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	6
15	A copper-controlled RNA interference system for reversible silencing of target genes in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11, 33.	6.2	18
16	Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in <i>Trichoderma reesei</i> . Molecular Microbiology, 2017, 105, 65-83.	2.5	93
17	The mating type locus protein MAT1-2-1 of Trichoderma reesei interacts with Xyr1 and regulates cellulase gene expression in response to light. Scientific Reports, 2017, 7, 17346.	3.3	37
18	A small periplasmic protein essential for Cytophaga hutchinsonii cellulose digestion. Applied Microbiology and Biotechnology, 2016, 100, 1935-1944.	3.6	11

WEI-XIN ZHANG

#	Article	IF	CITATIONS
19	Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei. Scientific Reports, 2015, 5, 13829.	3.3	25
20	Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. Biotechnology for Biofuels, 2015, 8, 67.	6.2	95
21	Identification and characterization of a novel locus in Cytophaga hutchinsonii involved in colony spreading and cellulose digestion. Applied Microbiology and Biotechnology, 2015, 99, 4321-4331.	3.6	12
22	Structural Insights into the Multispecific Recognition of Dipeptides of Deep-Sea Gram-Negative Bacterium Pseudoalteromonas sp. Strain SM9913. Journal of Bacteriology, 2015, 197, 1125-1134.	2.2	10
23	Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Applied Microbiology and Biotechnology, 2013, 97, 3925-3937.	3.6	37
24	Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis. Journal of Biological Chemistry, 2013, 288, 32861-32872.	3.4	153
25	Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose. Eukaryotic Cell, 2012, 11, 1371-1381.	3.4	100
26	Domains III and I-2α, at the Entrance of the Binding Cleft, Play an Important Role in Cold Adaptation of the Periplasmic Dipeptide-Binding Protein (DppA) from the Deep-Sea Psychrophilic Bacterium	3.1	5

<i>Pseudoalteromonas</i>
sp. Strain SM9913. Applied and Environmental Microbiology, 2010, 76, 4354-4361.